
University of Ljubljana
Faculty of Mathematics and Physics

Department of Physics

Seminar

End-to-End Particle Classification
in High-Energy Physics

Author: Adviser:
Elijan Jakob Mastnak prof. dr. Borut Paul Kerševan

Abstract

This work explores the use of convolutional neural networks to classify the
products of high-energy particle collisions using low-level, image-based
detector data. We restrict ourselves to binary classification, and, for
concreteness, focus on the popular example of distinguishing Higgs boson
and background events. We begin by defining end-to-end classification,
explain how the data used to perform this classification is measured at
the Large Hadron Collider, and outline how both fully-connected and
convolutional neural networks use this data to perform classification.
We conclude by presenting a concrete study involving image-based end-
to-end classification, and compare end-to-end workflows to traditional
classification methods based on reconstructed kinematic features.
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1.1. What is Particle Classification?

1 Why End-to-End Classification?

1.1 What is Particle Classification?

Before discussing the merits of one classification method or the other, we must first
define what we mean by classification. For our purposes, particle classification answers
the following question:

“Two high-energy particles collide. Which particles were produced as a
result of their collision?”

For concreteness, we will focus on binary classification involving Higgs boson detection,
in which we consider only two possible outcomes. These are:

1. a particle collision produced a Higgs boson (signal), or

2. a collision produced anything other than a Higgs boson (background).

1.2 Why End-to-End Classification?

Figure 1: An abstracted traditional particle classification workflow.

Perhaps the best motivation for “end-to-end” classification comes from showing,
as in Figure 1, what end-to-end classification is not. In particular, the steps “Particle
flow reconstruction” and “Feature engineering”, outlined in Section 2.4, turn out to
be quite non-trivial. End-to-end classification removes these steps. In an end-to-end
workflow, shown schematically in Figure 2, a classifier outputs a result computed
directly from raw detector data, with minimal intermediate data processing.

Figure 2: An end-to-end classification workflow eliminates the complicated intermedi-
ate steps involved in traditional classification (cf. Figure 1).

As implied by Figures 1 and 2, particle classification requires as input the data
measured by a particle detector. In the next section, we explore the nature of this
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2.1. The CERN Accelerator Chain

detector data, and outline how the data is produced and measured at the Large
Hadron Collider.

2 How the LHC Produces and Measures Collision Data

For our purposes, the Large Hadron Collider (LHC) is a synchrotron accelerator that
collides protons at teravolt-order center-of-mass energy [12]. Each collision produces
a cascade of secondary particles, whose energies and trajectories are measured in
specialized detectors like CMS and ATLAS. The purpose of this section is to explain:

1. the process leading up to a proton collision at the LHC,

2. the physical principles behind a detector’s measurement instruments, and

3. the image-like format of low-level detector data used by end-to-end classifiers.

2.1 The CERN Accelerator Chain

Figure 3: The components of the CERN accelerator complex relevant to this work.
Adapted from [15].

The story begins with a bottle of hydrogen gas. A strong electric field strips
the hydrogen atoms of their electrons, leaving behind only protons. These protons
are accelerated through the linear accelerator Linac2,1 setting in motion a journey
through the maze of synchrotron boosting stages shown in Figure 3 and culminating
at the LHC. Depending on operating conditions, the LHC accelerates protons to an
ultimate kinetic energy of up to 6.5TeV; these protons travel around the LHC in two
opposing beamlines in bunches of roughly 1011 particles, separated in time by 25 ns.
The beamlines cross, allowing for proton-proton collisions, at four nominal collision
points, around which are centered, in anticipation, the LHC’s four main detectors:
ALICE, CMS, LHCb, and ATLAS.

1In the LHC’s 2020 high luminosity upgrade, Linac2 is replaced with Linac4, which accelerates
negative hydrogen ions instead [19].
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2.2. Collision and Detection

2.2 Collision and Detection

Most protons in opposing beams zoom past each other without appreciable interaction.
Rarely, however, two protons collide head-on, setting in motion a chain of interactions
which ultimately produces a cascade of familiar elementary particles such as electrons,
protons, neutrons, muons, photons, and neutrinos. These secondary particles are
collectively called the collision’s decay signature, and fly outward in all directions
from the primary collision point through a surrounding particle detector. This brings
us to a key concept:

The exotic particles of interest in high-energy physics decay far, far before
they can interact with the detector (for example, a Higgs boson has a
mean lifetime of the order 10−22 s). The detector measures only the
secondary particles further down the decay chain.

In other words, we have no way of detecting a Higgs boson directly. The best we can
do is infer its presence from the nature of the collision’s decay signature. Thus, to
progress, we need a quantitative description of a decay signature.

2.3 Quantifying a Decay Signature

Fundamentally, a particle detector measures the following decay signature properties:

1. the trajectory of particles through the detector, and

2. the energy deposited in the detector by detected particles.

Trajectories are measured with instruments called trackers, while energy is measured
with calorimeters. From trajectory and energy, and by noting which particles appear
in which subdetector, we can reconstruct a number of secondary quantities, including
particle momentum, identity, and the positions of production and decay vertices.
In this section we first define the detector coordinate system, then discuss each
measurement instrument in turn. For concreteness, we will focus on the instruments
used at the Compact Muon Solenoid (CMS) detector [8], but similar concepts apply to
most particle detectors currently used in high-energy physics. For better orientation,
each of the four CMS sub-detectors discussed in this section appear, in correct scale,
in the diagram of the CMS detector shown in Figure 5 two pages below.

2.3.1 The Detector Coordinate System at the CMS

The CMS coordinate system is best understood visually, as shown in Figure 4. The
detector uses a hybrid Cartesian/cylindrical coordinate system, in which the origin
coincides with the nominal collision point, while the x, y, and z axes point towards
the center of the LHC, vertically upward, and along the beamline, respectively. The
azimuthal angle φ is measured in the xy plane, while the polar angle θ is measured
in the yz plane. Conventionally, the polar angle is given in terms of a quantity called
pseudorapidity,2 denoted by η and defined as

η ≡ − ln

(
tan

θ

2

)
=⇒ θ = 2arctan e−η. (1)

2Particle physicists work with pseudorapidity, and a related quantity called rapidity, because
differences in these quantities are Lorentz-invariant to boosts along the beam axis. For our purposes,
it is enough to view pseudorapidity as just an alternate representation of the polar angle θ.
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2.3. Quantifying a Decay Signature

Figure 4: Two perspectives of the coordinate system used at the CMS detector.

2.3.2 Trackers

Trackers measure the trajectory (position with respect to time) of particles flying out
from the collision point. The basic tracker building blocks are microscopic silicon
pixels and strips with dimensions of order 10 µm to 100 µm, each connected to its own
electronic read-out channel. Each pixel (strip) has an intrinsic electric field, similar
in principle to the built-in electric field in a pn junction’s depletion region.

The CMS tracker [10] consists of millions of these silicon elements arranged
in concentric, cylindrical layers around the nominal collision point. An incident
particle passing through a silicon pixel (strip) excites the atoms in the pixel’s (strip’s)
depletion region, creating electron-hole pairs. The silicon element’s electric field
then accelerates the electrons and holes to opposite pixel (strip) faces, leading to a
measurable charge pulse called a hit. Hits from successive layers are combined to
reconstruct an incident particle’s trajectory.

Importantly, the CMS tracker is immersed in a 4T magnetic field, generated by
the CMS’s namesake solenoidal superconducting magnet. Because of this magnetic
field, charged particles in the Tracker bend under the influence of the Lorentz force,
which allows physicists to reconstruct the momenta of charged particles from the
curvatures of their Tracker trajectories.

2.3.3 Electromagnetic Calorimeters

Electromagnetic calorimeters (ECALs) measure the energy of particles that interact
with matter via the electromagnetic interaction. At the CMS, the basic ECAL building
block is a lead tungstate (PbWO4) scintillator crystal connected to a photodetector [7].

The basic working principle is as follows: high-energy incident particles interact
with the PbWO4 scintillators (electrons via bremsstrahlung, high-energy photons
predominantly via pair production) to produce secondary electromagnetic showers—
cascades of lower-energy photons, electrons, and positrons. Shower particles excite the
PbWO4 scintillators, which emit blue-light scintillation photons during the relaxation
process. These scintillation photons reach the crystal’s attached photodetector
(avalanche photodiodes in the ECAL barrel and vacuum phototriodes in the ECAL
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2.3. Quantifying a Decay Signature

end caps [7]), where they free electrons via the photoelectric effect. After further
amplification, these photoelectrons produce a measurable electric current whose
amplitude encodes the energy deposited by the initial incident particle.

Figure 5: A cutaway diagram of the CMS detector, showing each of the sub-detectors
(silicon trackers, ECAL, HCAL, and muon detectors) discussed in this work. [17]

2.3.4 Hadronic Calorimeters

Hadronic calorimeters (HCALs) measure the energy of particles that interact with
matter via the strong interaction. The CMS HCAL consists of alternating layers
of absorbers—brass and steel plates—and scintillation detection modules—plastic
scintillator tiles connected to hybrid photodiodes [9].

A high-energy particle interacts with the absorber material, primarily via the
strong interaction, to produce a hadronic shower—a cascade of lower-energy hadronic
particles. The shower particles excite the plastic scintillator tiles, which emit blue-
light scintillation photons; these photons are then converted to a measurable electric
current via the photoelectric effect by the tiles’ attached photodiodes. Just like in the
ECAL, the current’s amplitude encodes the energy deposited by an incident particle,
while the position of the activated scintillator tile encodes the particle’s position.

2.3.5 Muon Detection

For the purposes of this work, this section may be skipped without loss of continuity.
However, for completeness, we now briefly outline the CMS’s namesake muon detection
system. The CMS muon detector is a gas-based detector, whose basic module is a
rectangular drift tube enclosing a mixture of argon and CO2 gas (10 to 20 percent CO2

by volume). Through the chamber’s center runs a thin steel anode wire (radius 50 µm),
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held at a kilovolt-order potential difference relative to copper-coated electrodes glued
to the chamber’s outer surface [16].

A high-energy muon incident on the drift tube ionizes the internal gas, freeing
electrons and positive ions. These ions are accelerated across the tube’s potential
difference to the anode wire and cathode electrodes, respectively, resulting in a
measurable pulse of electric charge. The number of freed ions is proportional to the
energy deposited in the drift tube by the incident muon, so the signal amplitude, like
in ECAL and HCAL, encodes the muon’s energy; the location of the signal pulse
along the electrodes reveals the muon’s position.

Three other muon detector components, namely resistive plate chambers, cathode
strip chambers, and gas electron multipliers, rely on the same physical principle of gas
ionization and ion collection. For more information, interested readers are referred to
Refs. [3] or [16] for a friendly or technical discussion, respectively.

Importantly, the muon detection system resides at the very outer layer of the
CMS. Since muons are the only familiar decay product (besides neutrinos, which
do not ionize gas) to pass through the ECAL and HCAL unimpeded, we can be
reasonably sure any particle registered in the muon detector is indeed a muon.

2.4 Low-Level Detector Data and How It Is Used

Figure 6: A composite image of a photon+jet (background) event at the CMS. Tracks
appear in orange log scale, ECAL hits in blue log scale, and HCAL hits in gray linear
scale. Pixels correspond to physical PbWO4 scintillator crystals in the ECAL barrel’s
360× 170 crystal grid, which spans φ ∈ [0, 2π) and |η| < 1.479. Adapted from [1].

If we combine the Tracker hits and ECAL/HCAL signal pulses and project these
quantities onto the detector’s φη plane, we get something like the image shown in
Figure 6. This image, from a simulated photon+jet event at the CMS [5], shows the
raw Tracker (position) and ECAL/HCAL (energy) information encoding the event,
projected onto the ECAL barrel’s 360× 170 grid of PbWO4 scintillator crystals.

Figure 6 serves as our basic model of low-level detector data: an image-like grid
with two spatial dimensions (φ, η) and three detector channels, in which pixel intensity
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corresponds to either (i) charge deposited in the Tracker, or (ii) energy deposited
in ECAL or HCAL. In each case, the position of a given pixel in the image has a
well-defined physical correspondence to the position of a measurement module (e.g.
Tracker pixel, ECAL scintillation crystal) in the detector. Equipped with this form
of image-based data, we have three options:

(a) End-to-end classification: use the low-level data as is, and feed this data into a
convolutional neural network, which outputs a predicted classification result.

(b) Kinematic-based classification, in which we feed the raw data into a particle flow
reconstruction algorithm,3 which reconstructs kinematic features, for example
transverse momentum (relative to the beam axis) and pseudorapidity (Eq. 1),
describing the decay products. We then use this kinematic data as input into a
fully-connected neural network (FCN), which outputs a classification result.

(c) Reconstruct kinematic features from the low-level data as above, then use these
kinematic features to hand-engineer high-level features, manually designed to
separate signal from background events on an experiment-by-experiment basis
(for example, decay particle invariant masses at which we expect high signal
production). Then, feed these high-level features, often in combination with the
kinematic features described above, into a FCN or BDT classifier. See Ref. [2]
for a study comparing kinematic-based and high-level classification.

Schematically, classification workflows (b) and (c) resemble Figure 7.

Figure 7: The binary classification process using a FCN. The outputs ŷsig and
ŷbg represent the predicted probabilities that the inputted feature vector xfeature
corresponds to either signal or background, respectively, as explained in Section 3.1.

3 Fully-Connected Networks

In this section we take a look inside the “Fully-Connected Neural Network” box
in the block diagram in Figure 7. Suppose, as in Figure 7, that we have a set of
kinematic properties encoding a collision event (found, for example, with the particle
flow reconstruction algorithm mentioned in Section 2.4), which we pack into a vector
x. In machine learning terminology [13], each individual kinematic property is called
a feature, and the two possible outcomes (signal or background) are called classes.
The correct class (either signal or background) for a given event is called the event’s
target or label, and the complete set of features describing a single event, together

3Particle flow reconstruction falls largely beyond the scope of this work. As an example, we can
reconstruct a particle’s transverse momentum from the curvature of its trajectory in the detector’s
magnetic field, but we will otherwise treat reconstruction as a “black box” that outputs kinematic
quantities describing a collision. Interested readers are referred to Ref. [18].

9



3.1. Understanding a Binary Classifier’s Output

with the label, is called an instance. Finally, the complete set of available instances
(the complete set of collision events) forms a dataset. With the vocabulary lesson
out of the way, we are equipped to formally describe a neural network. But first, we
should reveal supervised machine learning’s dirty secret:

In the application of deep learning to particle physics classification, the
datasets used to train neural networks are entirely simulated.

Why? The nature of the network training process requires a large set of correctly-
labeled training data for the network to build an accurate model that, subsequently,
correctly classifies unlabeled, physical data. (That the network requires correctly-
labelled training data to work properly should make sense—it cannot come up
with a correct view of the physical world out of thin air.) Simulation, rather than
measurement, turns out to be the best way to rapidly and accurately produce correctly-
labeled particle classification data at the scale needed for network training, and so
it happens that the datasets used to train neural networks for particle classification
problems are simulated.4 Put simply, we know the outcome of each simulated collision
event—the computer simulation creates it. Using the simulated dataset of correctly-
labeled data, one can train a neural network to give accurate results even when, as in
practical applications, the correct results aren’t known beforehand.

3.1 Understanding a Binary Classifier’s Output

Figure 8: A representative binary classification output for four hypothetical data
instances. While labels y give perfect “one” or “zero” answers, a classifier’s actual
predictions ŷ represent a probability for each class in the continuous range [0, 1].

We now pause to clarify what a binary classifier’s output looks like and how to
interpret the result. First, we decide on an order in which to quote the possible classes:
in this work we will quote signal first, then background. The label, represented by
a vector y, equals one at the position of the correct class and zero at the position
of the incorrect class. In the signal-first convention, a generic label vector reads
y = (ysig, ybg); the label y = (1, 0) represents signal while y = (0, 1) represents
background. Meanwhile, a classifier’s prediction, denoted by ŷ = (ŷsig, ŷbg), represents
the predicted probabilities that an event corresponds to either signal or background;
these two values should sum to one. Figure 8 summarizes these ideas visually.

4Simulated collision data is constructed with sophisticated algorithms involving Monte-Carlo
sampling, a theoretical physical framework such as the Standard Model, and a geometrical model of
the particle detector. Like particle flow reconstruction, this falls beyond the scope of this work.
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3.2 An Overview of a Fully-Connected Network

Figure 9: A fully-connected network’s internal architecture; each neuron beyond
the input layer connects to every neuron in the previous layer. The figure uses the
notation from Appendix A. The

∑
(sum) symbol represents the multiply-add neuron

operation in Equation 2, while the hinge and σ symbols represent the ReLU and
softmax activation functions, shown in Figure 10 and Equation 3, respectively.

For better orientation, Figure 9 shows the architecture of a fully-connected neural
network. The basic building of a FCN is a neuron—represented by the circular nodes
in Figure 9. Neurons are then grouped into one-dimensional stacks to form layers.
A FCN consists of a single input layer, an arbitrary number of hidden layers, and a
single output layer, which outputs the classification scores discussed in Section 3.1.

In this section we build up to a big-picture interpretation of FCN-based classifi-
cation as the optimization of a vector-valued function, a concept which should be
familiar to physicists. That said, before proceeding we first refer interested readers
to Appendix A, which thoroughly explains the nuts and bolts of a FCN’s internal
architecture in the language of the machine-learning literature. However, while it
might help demystify the “black box” nature of neural networks, this formal treatment
can be skipped without loss of continuity.

3.2.1 The Basic Architecture of a Fully-Connected Network

A neuron may be viewed as a multi-variable scalar function; in analogy with neuro-
science, a neuron’s output is called its activation, which we will denote by a. When
considering the forward flow of information through a neural network, we must
consider the following two points. Each hidden layer neuron, which we will also refer
to as the “current neuron”,

(a) receives as input the activations a
(prev)
1 , a

(prev)
2 , . . . , a

(prev)
nprev of all nprev neurons

in the previous layer, and

(b) passes its scalar output a to all neurons in the next layer.

As required by point (a) and visualized in Figure 9, each hidden-layer neuron has input
connections to every neuron in the previous layer, hence the name “fully-connected”
network. The strength of each of these connections is parameterized by a unique
scalar weight wj ∈ R, where j = 1, 2, . . . , nprev; in other words, wj parameterizes the
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3.2. An Overview of a Fully-Connected Network

current neuron’s connection to the j-th neuron in the previous layer. For compactness,
we write the current neuron’s weights as the vector

w =
(
w1, w2, . . . , wnprev

)
∈ Rnprev ;

similarly, the previous layer’s activation values are written as the vector

aprev =
(
a
(prev)
1 , a

(prev)
2 , . . . , a(prev)

nprev

)
∈ Rnprev .

In addition to its nprev weights, the current neuron is parameterized by a single
scalar bias b, which serves as an additive constant which can translate the neuron’s
activation value.

Next, to understand the current neuron’s output, we proceed in two steps:

1. First, the input activation values a
(prev)
j from the previous layer’s neurons are

multiplied with each of their corresponding weights wj , summed, and translated
by the current neuron’s bias b to produce a pre-activation value z given by

z = w1 · aprev
1 + · · ·+ wn · aprev

n + b = w · aprev + b ∈ R. (2)

Note that this is just the dot product of the current neuron’s weight vector
with the previous layer’s activation vector, plus the current neuron’s bias, i.e. a
linear function of the input activations.

2. Second, the current neuron’s pre-activation value z is passed through a non-
linear activation function fa : R→ R to produce the scalar activation value

a = fa(z) = fa
(
w · aprev + b

)
∈ R.

Figure 10: The ReLU function

Crucially, using non-linear activation functions
allows the network to form non-linear decision bound-
aries in the high-dimensional feature space of the
inputted feature vectors; these non-linear boundaries
enormously improve classification potential. In prac-
tice, deep networks predominantly use the rectified
linear unit (ReLU) function (Figure 10) or one of its
variants;5 I will use the notation fa for generality.

The output layer’s activation function is different.
At least in classification problems, it is chosen so that
the sum of the output layer’s activations equals one,
giving the interpretation of the output activations as
a probability distribution over the possible classes. A common output layer activation
function, applicable to an arbitrary number of, say, C classes, is the softmax function

σ(z)i =
ezi∑C
j=1 e

zj
for i = 1, 2, . . . , C and z ∈ RC . (3)

Moving one step up the network hierarchy from a single neuron to an entire layer
(which we’ll call the “current layer”), we pack the weight vectors of each of the n

5See Wikipedia’s list of common activation functions for a comprehensive list.
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3.2. An Overview of a Fully-Connected Network

neurons in the current layer column-wise into a weight matrix W given by

W =
(
w1 w2 · · · wn

)
=


w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n
...

...
. . .

...
wnprev,1 wnprev,2 · · · wnprev,n

 ∈ Rnprev,n,

where the weight wj,i parameterizes the connection between the i-th neuron in the
current layer and the j-th neuron in the previous layer. Similarly, we pack the biases
of each neuron in the current layer into a single bias vector

b =
(
b1, b2, . . . , bn

)⊤ ∈ Rn,

where bi denotes the bias of the i-th neuron in the current layer. Using this matrix
formalism, the entire current layer’s pre-activation output is compactly written

z = W⊤aprev + b ∈ Rn,

while the current layer’s activation values read

a = fa(z) = fa

(
W⊤aprev + b

)
∈ Rn,

where the activation function fa is understood to act on the vector z element-by-
element. The current layer’s activation values a then serve as input to the next layer,
and the cycle repeats. In this way, a feature vector describing a particle collision
event propagates through the entire network from input layer to output layer, as
shown in Figure 9. The eventual activation values in the output layer serve as the
classification scores discussed in Section 3.1, from which we can read off the inputted
collision’s predicted class.

3.2.2 FCN Classification as a High-Dimensional Optimization Problem

We now describe the “big-picture” interpretation promised in this section’s introduction.
A single neuron is a multi-variable scalar-valued function, parameterized by a weight
vector w and bias b, which takes as input the previous layer’s activation aprev and
outputs the scalar activation value

ai = fa(w · aprev + b) ∈ R.

Letting F and C denote the number of features and classes, respectively, the entire
network is a multi-variable vector-valued function h : RF → RC , parameterized by
the L weight matrices W(l) and bias vectors b(l) of each layer. The network takes
as input a feature vector x ∈ RF and produces as output a vector of predicted
classification scores ŷ ∈ RC , where the component ŷc gives the probability that the
feature vector x corresponds to the c-th class, c ∈ {1, 2, . . . , C}. In this light:

A FCN classification problem is the optimization problem of finding the
optimal values W

(l)
opt and b

(l)
opt of each layer’s weights and biases such that

the network’s prediction ŷ for the class of an inputted feature vector x
gives the best possible approximation to the true result encoded by the
label vector y.
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3.1. Understanding a Binary Classifier’s Output

3.2.3 A Brief Look at Optimization

Machine learning optimization works by making a neural network’s predictions
“less bad” (rather than, say, improving a positive metric). To proceed, we need a
quantitative metric encoding how “incorrect” a network’s prediction ŷ is, relative to a
known label vector y. This metric is called loss. For a classifier with C classes, loss is
given by a scalar-valued loss function L : RC → R, which takes as input a predicted
classification score ŷ and label vector y, and returns a scalar value L encoding the
difference between ŷ and y. For concreteness, an example loss function commonly
used for classification problems is the categorical cross entropy function

L(ŷ;y) = −
C∑
c=1

yc ln ŷc. (4)

For this function, recalling the prediction and label vector structure from Section 3.1
in which yc ∈ {0, 1} and ŷc ∈ [0, 1], we see that L = 0 if ŷ = y, while L grows
increasingly larger as the elements in ŷ and y increasingly differ.

Put briefly, we optimize the network’s weights and biases by minimizing the
loss function using standard numerical methods for multi-dimensional minimization
problems, but adapted to very large parameter spaces and huge datasets. Interested
readers are referred to Appendix A.3 and Chapter 6.5 of Ref. [14].

4 Convolutional Neural Networks

An end-to-end classification workflow using convolutional neural networks appears in
Figure 11. Our goal in this section, just like in Section 3 for FCNs, is to outline what
occurs inside the “Convolutional Neural Network” box in Figure 11. As for FCNs, we
describe the key ideas here and relegate some technical details to Appendix B, which
may be skipped without loss of continuity.

Figure 11: The binary classification process using a CNN. Instead of using recon-
structed kinematic quantities, the classifier works directly with image-based detector
data (cf. Figure 7).

Suppose, as shown schematically in Figure 11, that we have a set of image-based,
low-level detector data of the same form as Figure 6; these images will serve as input
to our CNN. Let’s begin by analyzing the properties of our input data. Paraphrasing
from the excellent explanation in Ref. [11], our image-based detector data:

(a) is stored as multi-dimensional arrays,

(b) has one axis—the detector channel—used to access different views of a collision
event from the three CMS subdetectors (Tracker, ECAL, and HCAL), and
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(c) has two spatial axes—for the coordinates φ and η—with well-defined spatial
structure in which ordering matters.

Point (c) is especially important. In an image such as Figure 6, the relative positions
and intensities of the pixels encode a wealth of relevant physical information about
particle trajectory and energy, as discussed in Sections 2.3 and 2.4. Even if you forget
everything else about CNNs, you should remember this:

Convolutional neural networks are designed to preserve and leverage the
information encoded in an input image’s spatial structure (in a way that
FCNs, which are limited to one-dimensional vector inputs, cannot).

We thus need a novel, space-preserving way for convolutional networks to interact
with their input images. Instead of flattening the input into a large vector, we might
imagine “scanning” the two-dimensional image with a small, also two-dimensional
“filter”, which moves across the image and builds up a map of distinguishing features,
such as bright spots, curves, or edges. This is the essence of a discrete convolution,
the core (and namesake) operation of CNNs and the subject of the next section.

4.1 Discrete Convolution

A discrete convolution involves two multidimensional objects—an input image and a
kernel or filter. The kernel is a pixel-like grid like the input image, but always smaller
in height and width. Each kernel pixel is assigned a scalar weight, and the kernel as
a whole a single scalar bias; these kernel weights and biases are a CNN’s tunable
parameters, and replace the neuron weights and biases in a FCN [13, 14].

During discrete convolution,6 the kernel slides across the input image from left to
right and top to bottom, and at each possible position the kernel and input elements
are multiplied element-wise and summed to produce a single scalar value. The set
of these scalar products at each possible kernel position within the input image
produces the output, called an output feature map, again an image-like pixel grid.
This is awkward to explain in words but straightforward visually—hence Figure 12.
Importantly, a discrete convolution’s output has the same dimensional form as its
input, and can thus be used as the input feature map to another convolutional layer.

In practice, images are three-dimensional—they contain multiple channels, such as
the three subdetector channels in our CMS detector data or the three color channels
in RGB images. In this case the convolutional kernel is also three dimensional, with
a separate kernel channel for each image channel, as shown in Figure 13. After
convolution, a kernel’s outputs are summed across the channel axis to produce a
scalar value for each spatial position of the kernel within the input image. The end
result is again a two-dimensional output feature map, as in Figure 13. Mathematical
relationships between kernel, input, and output size are given in Appendix B.3

In practice, as shown schematically in Figure 15, CNNs also convolve a single
input feature map with multiple kernels—just like FCNs employ multiple neurons
in each fully-connected layer. Each kernel captures different feature information
(edges, curves, contrasting colors...) describing the input image, so using more kernels
improves potential classification power. In this case, a convolutional layer’s output

6Formally, the operation commonly called discrete convolution is actually cross-correlation; true
convolution employs a kernel whose elements are reflected across the spatial axes. This technicality
is irrelevant in practice; see Chapter 9.1 of Ref. [14] for a more thorough discussion.
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Figure 12: A toy example of a discrete convolution. The kernel is placed at each
possible position in the input, and the kernel and input are multiplied element-wise
and summed to form the output values. The kernel’s bias is omitted for conciseness.

Figure 13: Discrete convolution with multiple channels in the input; cf. Figure 12.
The convolutions from each channel are summed across the channel axis to produce
a single-channel output. In practice, of course, the input and kernel would have
different values in each channel. The kernels’ biases are omitted for conciseness.

is three dimensional (with as many channels as the number of kernels used for
convolution) and serves as the multi-channel input to a subsequent convolutional
layer.

4.2 Pooling

Figure 14: The max pooling operation. The kernel moves in non-overlapping patches
across the input and outputs the maximum pixel value at each patch. Note that,
unlike discrete convolution (Figure 13) pooling preserves the channel dimension.

Convolutional networks also employ a second, simpler operation called pooling.
Pooling serves two purposes; these are to:
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• make the CNN’s output invariant to local translations of the input image, and

• spatially downsample an input without introducing new learnable parameters.

Pooling involves a pooling kernel, which is analogous to the convolutional kernel, but
simpler. Most commonly, the pooling kernel slides across an input feature map’s
spatial dimensions in non-overlapping patches, and outputs the maximum pixel value
at each kernel position. Pooling preserves channel dimensions, so a pooling stage’s
output always has the same number of channels as the input, as shown in Figure 14.

In principle, the pooling kernel could also move across overlapping or arbitrarily-
strided patches, and output, say, the average pixel value (average pooling) instead
of the maximum (max pooling). However, max pooling with non-overlapping strides
appears most commonly in modern CNNs [13].

4.3 The Basic Architecture of a Convolutional Network

Figure 15: The important stages of a convolutional network in their typical sequence.

Figure 15 shows the typical sequence of operations in a CNN: an input image is
processed by multiple kernels in a convolutional layer, passed element-wise through
a non-linearity (most commonly a ReLU), and downsampled in a pooling layer.7

The process then repeats, with one stage’s output feature map used as the input
to the next stage. Finally, the output of the last pooling layer is flattened into a
one-dimensional vector and passed through a single fully-connected layer to produce
classification scores in an identical format as already seen for FCNs in Section 3.1.

For CNNs, we tune the convolutional kernels’ weights and biases instead of the
neuron weights and biases in FCNs. The general principles of loss, optimization and
backpropagation through computational graphs discussed in Appendix A.3 in the
context of FCNs still apply to CNNs, and we will not repeat them here.

5 End-to-End Classification in Practice

5.1 A Case Study in End-to-End Classification

For concreteness, we now summarize an actual study involving end-to-end classi-
fication: the work of Andrews et al. in Ref. [1]. This study uses convolutional
neural networks to distinguish diphoton Higgs boson decays from two similar back-
ground events using simulated CMS data. The study considers the following three

7In practice, a convolutional stage’s outputs are usually also normalized to zero mean and unit
variance in a normalization layer, which is empirically found to improve training performance [13].
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processes: (i) gluon fusion Higgs production to diphoton decay gg → H0 → γγ
(signal); (ii) quark-antiquark annihilation to diphoton decay qq̄ → γγ (background);
and quark-antiquark annihilation to photon+jet decay qq̄ → γj (background). Repre-
sentative Feynman diagrams for the signal and diphoton background process appear
in Figure 16, while the relevant datasets may be found in Refs. [4], [5], and [6].

Figure 16: Representative Feynman diagrams showing the signal (left) and diphoton
background (right) processes in Andrews’ study. For the purposes of this work, it
suffices to note that both processes share identical γγ backgrounds.

The two background processes are chosen specifically to represent two common
challenges in high-energy physics particle classification. These are:

(a) irreducible backgrounds—the diphoton background has identical decay products
to the signal process, as shown in Figure 16—and

(b) unresolved decay products—for reasons irrelevant to this work,8 the jet in the
γj background appears in the ECAL detector as a single, photon-like cluster,
so the γj decay signature appears similar to its γγ counterpart.

The study uses a 15-layer variant of a common CNN architecture called a residual
network (ResNet), which employs a structure called a “residual block”, in which
inputted feature maps are allowed to bypass convolutional layers; interested readers
are referred to Chapter 14, page 457 of Ref. [13]. As input, the CNN classifier accepts
the same image-like data shown in Figure 6, and outputs three classification scores
ŷsig, ŷbgγγ , and ŷbgγj , representing the predicted probabilities for each of the three
processes considered in the study. For reference, the study also classifies the same
datasets using a kinematics-based FCN classifier, discussed in Section 3. This FCN is
trained on the transverse momenta, pseudorapidities, and azimuthal angles of the
decay particles, and the results are compared to those obtained by the CNN.

5.1.1 Discussion of Results

We now briefly examine one of the study’s more interesting results. Namely, we
compare the performance of the FCN and the two CNN classifiers when distinguishing
H → γγ signal and qq̄ → γj background events; one CNN is trained only with
ECAL data (CNN, ECAL) and one with Tracker, ECAL and HCAL data (CNN,
all). The classifications results are shown in Figure 17 with a receiver-operating
characteristic (ROC) curve, which shows a classifier’s background rejection as a
function of classification efficiency. From Figure 17, we immediately see that, in this
particular case, the CNN classifiers substantially outperform their FCN counterpart.

8For the sake of completeness, the jet is electromagnetically enriched to deposit its energy
primarily in the ECAL via a neutral meson decaying to two merged photons [1, 5].
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Figure 17: An ROC curve showing the
results for a kinematic-based FCN (gray)
and two end-to-end CNN (blue and red)
classifiers for distinguishing H → γγ signal
and γj background. Adapted from [1].

To interpret this discrepancy, it helps
to remember what the relevant detector
data actually looks like; recall that a rep-
resentative γj background event appears
in Figure 6. A human, equipped with the
power of vision, can immediately distin-
guish the photon and jet in Figure 6.
Aside from the obvious fact that the
hadronic jet carries Tracker and HCAL
hits, we also notice subtle differences in
shower distribution—the photon’s hits
are concentrated and circular, while the
jet’s are more dispersed and dragged out
elliptically along the φ axis. However,
we might struggle to give an answer if
the only information we received were
the momentum and (φ, η) coordinates of
the two events. But that is precisely the
information seen by a kinematic-based
FCN! A CNN, meanwhile, is designed to
preserve and learn from the entire im-
age’s spatial structure; hence the improved performance seen in Figure 17. In other
words, CNN classifiers using low-level detector data show promise for distinguishing
between processes with subtle differences in shower distribution, and thus offer a
powerful classification tool for high-energy physicists in the search for new physical
processes.

5.2 Concluding Thoughts

Using raw detector data, without further processing, preserves the maximum available
physical information about a particle collision event. Since convolutional networks
are better suited to learning from the spatial information encoded in raw detector
data than fully-connected networks, CNNs and the end-to-end classifiers employing
them show a clear advantage over kinematic feature-based classifiers for processes
distinguished by subtle difference in particle shower distributions.

The benefits of end-to-end classification are numerous. Aside from their greatest
benefit—preserving and learning from spatial information—end-to-end workflows
provide a general, widely applicable framework to particle classification. Because
of their low-level inputs, end-to-end classifiers mitigate our reliance on particle flow
reconstruction of kinematic features, and potentially eliminate completely the need
for manual engineering of high-level features on a case-by-case basis.

Additionally, although not discussed in this work, using traditional FCN classifiers
with processes involving many (or a variable number of) decay products poses a
considerable technical challenge [1]. For CNNs such issues are avoided altogether—
one simply inputs raw detector data and training labels, and the CNN develops its
classification power from the spatial distribution of the particle showers. As such,
CNN-based end-to-end classifiers offer a promising tool for analyzing the increasingly
complex processes and weaker signals involved in modern particle physics and the
search for physics beyond the Standard Model.
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A.1. Weights and Biases

A A More Technical Discussion of FCNs

We begin by introducing the notation9 needed to describe a FCN:

• Let F denote the number of features and C the number of classes. A binary
classifier with two classes has C = 2, but we use C for generality.

• Let L denote the number of hidden layers (so that the network has L+ 1 layers
when including the input layer).

• Let l = 0, 1, 2, ..., L index the layers, with l = 0 the input layer and l = L the
output layer.

• Let nl be the number of neurons in layer l, and let i, where i = 1, . . . , nl, index
the neurons in each layer. A neuron’s position in the network is uniquely defined
by the layer l and index i.

A.1 Weights and Biases

The purpose of the weights and biases appears immediately below in Appendix A.2.

Consider an arbitrary i-th neuron in the network’s l-th layer, and, for better semantics,
let nprev ≡ nl−1 denote the number of neurons in the previous layer. This generic l-th layer
neuron is assigned:

1. A total of nprev scalar weights w
(l)
j,i ∈ R, contained in a weight vector

w
(l)
i =

(
w

(l)
1,i, w

(l)
2,i, . . . , w

(l)
nprev,i

)⊤
∈ Rnprev . (5)

Each l-th layer neuron connects to all nprev neurons in the previous layer, and the
nprev weights parameterize these connections (see Figure 9). Going forward, I will
drop the (l) superscript from individual weights for easier reading.

2. A single scalar bias b
(l)
i ∈ R.

Moving up in the hierarchy, the full l-th layer, which contains nl neurons, is assigned

1. A single weight matrix W(l) ∈ Rnprev,nl given by

W(l) =


w1,1 w1,2 · · · w1,nl

w2,1 w2,2 · · · w2,nl

...
...

. . .
...

wnprev,1 wnprev,2 · · · wnprev,nl

 ≡ (
w

(l)
1 w

(l)
2 · · · w(l)

nl

)
∈ Rnprev,nl . (6)

The weight matrix W(l) has one column for each neuron in the l-th layer; this column
holds the corresponding neuron’s weight vector from Equation 5.

2. A single bias vector b(l) given by

b(l) =
(
b
(l)
1 , b

(l)
2 , . . . , b(l)nl

)⊤
∈ Rnl , (7)

which holds each of the biases of the nl neurons in the l-th layer.
9Note that some of the notation used in this work is not standard, but chosen on pedagogical

grounds for better semantics (e.g. l to index layers, c to index classes, a for activation value, etc...).

20



A.2. Response and Activation

A.2 Response and Activation

A.2.1 Pre-Activation Response

As shown in Figure 9, the input layer passes the feature vector x ∈ RF to each neuron in the
first hidden layer. The pre-activation response z

(1)
i ∈ R of the i-th neuron in the first layer is

a scalar value given by the weighted sum

z
(1)
i = w

(1)
i · x+ b

(1)
i = w

(1)
1,i · x1 + w

(1)
2,i · x2 + · · ·w(1)

F,i · xF + b
(1)
i ,

where w
(1)
i ∈ RF and b

(1)
i are the weight vector (Equation 5) and bias of the i-th neuron in

the first layer. Moving up in the hierarchy, the pre-activation values of all n1 neurons in the
first layer may be compactly written as a vector z(1) ∈ Rn1 given by the matrix equation

z(1) =
(
W(1)

)⊤
x+ b(1),

where W(1) ∈ Rn0,n1 ≡ RF,n1 and b(1) ∈ Rn1 are the first layer’s weight matrix and bias
vector, respectively (introduced in Equations 6 and 7).

A.2.2 A Neuron’s Activation

The activation value a
(1)
i of the i-th neuron in the first layer is the scalar value

a
(1)
i = f (1)

a (z
(1)
i ) ∈ R,

where f
(1)
a is the first layer’s activation function. The activation values of all n1 neurons in

the first layer may be compactly written as a vector a(1) ∈ Rn1 given by the matrix equation

a(1) = fa(z
(1)) = fa

((
W(1)

)⊤
x+ b(1)

)
,

where the activation function fa is understood to act on the vector z(1) element-by-element.
In other words, fa(z

(1)) is shorthand for

fa(z
(1)) ≡


fa(z

(1)
1 )

fa(z
(1)
2 )
...

fa(z
(1)
n1 )

 ∈ Rn1 .

In practice, all hidden layers use the same activation function, so I will omit the superscript
(l) for conciseness.

Moving forward through the network, the first hidden layer’s activation values a(1) ∈ Rn1

are passed forward to each of the n2 neurons in the second hidden layer. The pre-activation
values of the second hidden layer’s neurons are then

z(2) =
(
W(2)

)⊤
a(1) + b(2) ∈ Rn2 ,

while the activation values of the neurons in the second hidden layer are

a(2) = fa(z
(2)) = fa

((
W(2)

)⊤
a(1) + b(2)

)
∈ Rn2 .

More generally, the activation values of the nl neurons in the l-th hidden layer are

a(l) = fa(z
(l)) = fa

((
W(l)

)⊤
a(l−1) + b(l)

)
∈ Rnl .
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A.3 Optimization

A.3.1 Loss

To review from the brief discussion in Section 3.2.3, for a classifier with C classes, loss is given
by a scalar-valued loss function L : RC → R, which takes as input a predicted classification
score ŷ and label vector y, and returns a scalar value L encoding the difference between ŷ
and y. In practice, for computational efficiency during optimization, loss is computed on the
predictions from a mini-batch of M ∼ 128 feature vectors instead of individual instances. In
this case, the loss generalizes to

L =
1

M

M∑
m=1

Lm(ŷm;ym), (8)

which is just the average of the losses associated with each instance in the mini-batch.

A.3.2 The Optimization Process

Equipped with a metric for a network’s performance (i.e. loss), we can formulate the machine
learning problem as finding the weights and biases minimizing the network’s loss L. The
general spirit of the optimization process follows below:

1. Input into the network a mini-batch
{
(xm,ym)

}M

m=1
of M ∼ 128 instances; the network

outputs a corresponding batch of predictions
{
ŷm

}M

m=1
.

2. Compute the loss Lm associated with each individual prediction ŷm in the mini-batch
using, say, Equation 4, then compute the entire mini-batch loss L using Equation 8.

3. Compute the gradients ∇(l)
W(L) and ∇(l)

b (L) of the mini-batch loss L with respect to
the weights W(l) and b(l) in each of the network’s layers.

4. Adjust the values of each layer’s weights W(l) and biases b(l) using the just-computed
gradients of the mini-batch loss according to

W(l)
new ←W

(l)
old − η∇(l)

W(L) and b(l)new ← b
(l)
old − η∇(l)

b (L),

where η is a training parameter called the learning rate, with typical values in the
range 10−6 to 10−1, often adjusted dynamically during the training process [13]. Since
the gradients point in the direction of increasing L, adding negative gradient moves
the network in the direction of decreasing loss.

5. Repeat steps 1 to 4 with a new mini-batch. In principle, the network’s loss will decrease
with increasing iterations, and the network’s predictions ŷ will begin to approach
the true target values ŷ. Assuming all goes well,10 stop iterating when performance
plateaus, or when satisfied with the network’s results.

The magic occurs in step 4. However, I have pulled step 3—computing the loss’s gradient
with respect to the network’s weights and biases—out of thin air. In practice, these gradients
are computed with an algorithm called backpropagation, outlined in the next section.

A.3.3 Backpropagation

At its core, backpropagation is simply repeated application of the chain rule for differentiation.
In preparation, we first inventory the network’s complete set of operations (additions,
multiplications, activation functions...), beginning with the input layer and ending with the
loss L. We then organize these operations into a structure called a computational graph, with
each operation assigned a node in the graph. Backpropagation consists of two steps:

10I’m sweeping some details under the rug here. Among other things, a real-world training process
would include regularization, a validation metric to monitor over-training, and mechanism for early
stopping. These fall beyond our scope, and interested readers are referred to Ref. [13].
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1. First, in a procedure called a forward pass, we propagate an inputted feature vector
through the network’s computational graph from input to output (upstream) until
arriving at a scalar loss L, as described in Sections A.2 and A.3.1.

2. Second, in a procedure called a backward pass, we begin with the just-computed loss
and work backwards towards the inputs (downstream), calculating the local gradient
of each node in the computational graph with respect to the node’s immediate inputs.
We then use the chain rule to propagate these gradients further downstream through
the graph, eventually arriving back at the input layer and computing the gradient of
loss with respect to each layer’s weights and biases in the process. These gradients
are then used to adjust the network’s parameters, as in step 4 in the previous section.
The process then repeats with a new feature vector.

For completeness, we now review the chain rule, beginning with the simple scalar case.
Using our established FCN notation, we consider loss L = fL(a) as a function of an output
neuron’s activation a = fa(z), which is in turn a function of the neuron’s pre-activation value
z. In this case, the derivative of L with respect to z is

∂L
∂z

=
∂L
∂a

∂a

∂z
. (9)

Figure 18 shows a toy example of backpropagation, using Equation 9, in a single-neuron
network. Although the network is trivial, the figure still captures the essence of backpropa-
gation: repeated application of the chain rule to propagate gradients downstream through a
computational graph to reach the derivative of loss with respect to weights and biases.

Figure 18: The principles of backpropagation in a single-neuron toy network.

For realistic cases we need the chain rule’s vector generalization. Suppose L ∈ R is a
function of a ∈ Rn, which is in turn a function of z ∈ Rm; we write this as

L = fL(a) = fL
(
fa(z)

)
,

where fL : Rn → R and fa : Rm → Rn. Then the gradient of L with respect to z is

∇zL =

(
∂a

∂z

)⊤

· ∇aL ∈ Rm,

where ∂y
∂x ∈ Rn×m is the function fa’s Jacobian matrix. In practice, one would use an even

more general tensor formulation applicable to objects with an arbitrary number of indices.
For scalar loss L as a function of a tensor11 A, in turn a function of a tensor Z, this reads

∇ZL =
∑
j

(
∇ZAj

) ∂L
∂Aj

,

where j is a tuple index that runs over all possible indices into the tensor A. Further
discussion falls beyond our scope; interested readers are referred to Chapter 6.5 of Ref. [14].

11Note that term tensor is used loosely here to mean an array-like object with elements specified
by an arbitrary number of indices, which is not the precise mathematical definition of a tensor.
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B Additional Technical Details About CNNs

B.1 Zero-Padding
As was shown visually in Figures 12 and 13, the convolution process shrinks the input
image along the spatial dimensions. In cases where this is undesirable, the input image is
zero-padded—zeros are appended to its border, artificially increasing the input’s size, which
in turn increases the size of the output. In practice, zero padding is often used to ensure a
convolution’s input and output have equal spatial dimensions.

B.2 Stride
Often, one might wish to convolve the kernel and image at, say, every other position in the
image. In this case, the kernel slides across the input image multiple pixels at a time; the
number of pixels between successive kernel positions is called stride. Strides larger than
one are equivalent to downsampling the input image, and are used to save on memory and
computation cost for high-resolution images. For the interested reader, Ref. [11] provides
intuitive visualizations and clear explanations of both zero-padding and stride.

B.3 Convolutional Arithmetic
We now present the (straightforward) formalism describing how an inputted image propagates
through the layers of a convolutional network. Like in Appendix A for FCNs, we begin by
introducing the notation needed to describe a CNN.

• Let Cin and Cout denote the number of channels in an input and output feature map,
respectively.

• Let Iw and Ih denote the number of pixels in an input feature map along the width
and height axes, respectively.

• Let Kw and Kh denote the number of pixels in a convolutional kernel.

• Let Ow and Oh denote the number of pixels in an output feature map.

• Let pw and ph (p for “padding”) denote the number of zeros added to the beginning
and end of the input feature map’s width and height axes, respectively.

• Let sw and sh denote the kernel’s stride along the width and height axes.

As is straightforwardly seen in Figure 12, the output shape Oj along the axis j ∈ {w, h}, for
input and kernel dimensions Ij , Kj and for sj = 1 and pj = 0, is given by

Oj = (Ij −Kj) + 1.

More generally [11], the output shape along the axis j for arbitrary Ij , Kj , pj and sj is

Oj =

⌊
Ij + 2pj −Kj

sj

⌋
+ 1, (10)

where the vertical bars denote the floor function, used in case the stride sj does not evenly
divide the numerator.

We can now fully describe the propagation of an input feature map through a convolutional
layer. Suppose the layer’s input feature map has the shape (Cin, Iw, Ih), and a set of Cout
kernels with spatial dimensions (Kw,Kh) is used to process the input image. In this case,
the convolutional layer’s output has the shape (Cout, Ow, Oh), where the output dimensions
Oj are found from Equation 10. This output can then be used as the input to a subsequent
convolutional layer with a different set of kernels, and the convolution process repeats in the
next layer, as outlined in Section 4.3 on CNN architecture.
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