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1.1. The landscape of physical theories

1 Introduction

Measurements are the foundation of science. For our purposes, measurements
are quantified observations of the natural world in which we associate numerical
values with a physical phenomenon we wish to better understand. The essence of
measurement in physics goes roughly as follows:

1. observe a process in the natural world,

2. make numerical measurements of the observed process, and

3. study the measurements for patterns and structure. On the basis of these
patterns, formulate physical laws—essentially relationships between measured
quantities—in the language of mathematics.

When a well-defined, higher-level structure emerges from the jumble of experimentally-
determined observations and patterns, the resulting conclusions are called a physical
model. As a model is fine-tuned and continually stands the test of experiment—
meaning the model’s theoretical predictions are found to agree with experimental
observations—the model becomes a physical theory.1

Meanwhile, if, when testing the model, we find situations in which experimental
results consistently deviate from the model’s theoretical predictions, we have two
options:

1. reject the theory entirely, or

2. conclude that the theory is only valid within the limits of a specific regime.

Example: A short history of Newtonian gravitation

As a concrete example, we now give a quick history of the theory of Newtonian
gravitation that illustrates all of the important steps listed above. Newtonian
gravitation’s roots trace back to early astronomers observing the sky and recognizing
patterns and structure in distribution of stars. These observations eventually took
on a quantitative nature (e.g. times of orbit, when certain stars appear in the sky,
estimates of distances between the Earth and Sun, etc.) and eventually evolved into
the Copernican model of planets orbiting the Sun and the current solar system model.
These early astronomical models were later polished and summarized mathematically
by Kepler’s laws of planetary motion, which eventually evolved into Newton’s theory
of gravitation.

Later measurements with more advanced 20th century instruments revealed slight
but consistent discrepancies between experiment and the predictions of Newtonian
gravitation.2 These discrepancies were later explained by the 20th century theory of
general relativity, and Newtonian gravitation was eventually deemed to hold in the
limits of small gravitational fields and low speeds.

1Note that the definitions of and borders between concepts like “model” and “theory” are not
rigidly defined. Don’t worry if the distinctions seem vague—they often are, and you will gain
intuition with experience. For now it suffices to remember that a theory is more general and better
tested than a model.

2For example discrepancies involving the perihelion precession of Mercury or the angular deflection
of light around massive objects

3



Sa
m
pl
e

1.1. The landscape of physical theories

1.1 The landscape of physical theories

Many theories exist to describe the natural world; the most important of these are:

1. Classical physics (For our purposes3 classical physics is the material covered in
this course, i.e. Newtonian mechanics, classical thermodynamics, and classical
electrodynamics.)

2. Special relativity (covered in the second-year course Moderna fizika 1 )

3. Quantum mechanics (covered initially in Moderna fizika 1 and in more
detail in the aptly-named third-year course Kvantna mehanika)

4. General relativity, quantum field theory, and various theories of quan-
tum gravity (all beyond the scope of undergraduate study at FMF)

Each theory is valid (and useful) in a specific physical regime; which theory applies
in which regime depends largely on three physical quantities. These are:

1. speed,

2. distance (informally, size), and

3. gravitational field strength.

To say whether a physical system4 is, say, “big” or “small”, we have to compare it
to something. Ideally, this reference value for the system’s size should be something
with fundamental physical meaning, such as a natural constant. Although somewhat
ahead of our discussion of physical quantities in Section 1.3, the idea of comparison
to meaningful physical constants motivates describing a physical system in terms
of dimensionless parameters (dimensionless meaning without units). We construct
these dimensionless parameters by multiplying or dividing dimensioned quantities
characteristic of the system by fundamental constants with deeper physical meaning
(these constants set a meaningful scale against which to compare the system’s values)
and choose a combination such that the net result is dimensionless.

Since that might sound rather abstract, we now show how to describe a system’s
speed, size, and the surrounding gravitational field strength in dimensionless form.
Importantly, this exercise will give us a simple way to estimate which of the theories
mentioned earlier applies in which physical regime.

• Speed: we first determine a good universal reference speed. As you might
guess, a natural choice is the speed of light, defined5 as of May 2019 as

c ≡ 2.997 924 58 · 108ms−1. (1.1)

We then analyze a system with speed v in terms of the dimensionless ratio

v

c
. (1.2)

3Note that some authors also define special (and sometimes general) relativity as “classical
physics”, and only theories involving quantum physics are deemed “non-classical” or “modern”.

4For orientation, this “physical system” could be, for example, a mass on a spring, a ball tossed
in the air, a planet orbiting a sun, two protons colliding in a particle accelerator, a black hole...

5More on the (re-)definition of physical units coming soon in Section 1.3.1
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1.1. The landscape of physical theories

The quantity v/c is less than one for any physical system (since the speed
of light c is a universal speed limit), and how much less than one gives a
physically meaningful statement of the system’s speed. Systems with v/c ≪ 1
are accurately described by classical physics, while systems with v/c ≲ 1 require
special relativity or more advanced theories.6

• Size: A fundamental distance characteristic of the boundary regime between
classical and quantum physics is a quantity called the electron Compton wave-
length, denoted by λC and equal to

λC ≡ hc

mec2
= 2.426 310 238 67(73) · 10−12m, (1.3)

where h is the Planck constant and me is the electron mass. The Compton
wavelength sets the scale for distances at the level of atoms and fundamental
particles—you will hear more about it in Moderna fizika 1. We then represent
the size of a system with characteristic length L in terms of the dimensionless
parameter

λC

L
. (1.4)

Systems with λC/L ≪ 1 (i.e. lengths much larger than λC) are accurately
described by classical physics, while systems with λC/L ≳ 1 require a quantum-
mechanical treatment (although quantum mechanics is often relevant even at
nanometer scales).

Alternatively, one could also separate classical and quantum mechanics with
the Bohr radius

a0 = 5.291 772 109 03(80) · 10−11m (1.5)

and the associated dimensionless parameter a0/L. Physically, the Bohr radius
represents the expected distance between the electron and nucleus in the ground
state of a hydrogen atom; you’ll get plenty of experience with both λC and a0
in Moderna fizika 1.

To be clear, the exact values of both λC and a0 to the long strings of decimals
given above are not important now; the takeaway here is that both are charac-
teristic of distances at the atomic scale, which occurs at roughly 10−12m and is
much smaller than anything familiar from everyday life (the width of a human
hair, for instance, is of the order 10 µm to 100 µm.)

• Gravitational Field Strength: Only for the sake of completeness—this
predates our treatment of gravitation—a characteristic dimensioned quantity
representing a system of a mass m a distance r from a massive body of mass
M generating a gravitational field is the gravitational potential

ϕg =
GM

r
, (1.6)

where G = 6.674 30(15) · 10−11m3 kg−1 s−2 is a universal constant called the
gravitational constant. We then turn this into a dimensionless parameter by

6In case you haven’t seen it before, the symbol ≪ means “much less than”, while ≲ means “less
than, but of the same order”. For example, one might reasonably write 1 ≪ 1000 and 1 ≲ 1.1.
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1.1. The landscape of physical theories

dividing through by c2 and including the mass m of the body exposed to the
gravitational field:

mϕg

mc2
=

GmM

rmc2
. (1.7)

It might seem unproductive to include the mass m in both the numerator
and denominator without simplifying, but this has an instructive physical
interpretation: mc2, as you might have recognized from the famous equation
E = mc2, is the rest energy inherently associated with the mass m, while
mϕg is the gravitational energy associated with immersing the mass m in the
gravitational field generated by the mass M . In other words, mϕg/mc2 is
a ratio of two energies—one associated with the gravitational field and one
inherent to the mass m—and energies are easier to interpret than an abstract
quantity like the gravitational potential ϕg alone.

To a first approximation, systems with mϕg/mc2 ≪ 1 are well-described by
classical physics, while systems with mϕg/mc2 ≳ 1 require general relativity.
For orientation, the Earth-Sun system, using Msun ≈ 2 · 1030 kg and an Earth-
Sun separation r ≈ 1.5 · 1011m, produces mϕg/mc2 ∼ 10−8 ≪ 1. In other
words, the Earth-Sun system, as might be expected, is well-described by simple
Newtonian gravitation. Don’t worry if you don’t understand the equation for
ϕg—you are not expected too, since we have not yet covered gravitation.

Figure 1 shows where each of the important theories mentioned earlier falls in
the “phase space”7 of physical theories spanned by the parameters v/c, λC/L and
mϕg/mc2.

Quantum
Mechanics 

Special Theory
of Relativity

General Theory
of Relativity

Quantum Field
Theory

Quantum
Gravity 

Classical
Physics

large speeds

small distances

large gravitational fields

(in development)

Figure 1: The landscape of physical theories. The appropriate theory to describe
a given system depends on the system’s speed, size, and the gravitational field to
which it is exposed.

Validity of Classical Physics

7To not leave you in the dark, a physical system’s phase space refers to the space of the system’s
possible states. This concept turns out to be useful in many branches of physics (you’ll meet it, for
example, in the second-year courses Statistična termodinamika and Klasična mehanika). But we use
the term here only loosely to refer to the space of all existing physical theories.
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1.1. The landscape of physical theories

Classical physics holds at “not too small” distances and “not too large” speeds and
gravitational fields. More quantitatively, the theoretical predictions of Newtonian
mechanics agree with experiment for physical systems with characteristic speed v,
distance L and gravitational potential ϕg satisfying

v

c
≪ 1,

λC

L
≪ 1, and

ϕg

c2
≪ 1. (1.8)

The physical world we experience in our everyday lives generally falls in this regime.
Of course, we also wish to describe the physical world in the more exotic regimes

shown in Figure 1, where classical physics fails. For the most part, each exotic regime
has its own specialized theory; a very active subject of research involves connecting
the exotic theories among themselves in a self-consistent manner. Following is a
whirlwind tour of the physical regimes and theories shown in Figure 1.

• The first theory to transcend Newtonian mechanics was the special theory of
relativity (STR), which holds at large speeds (v/c ≲ 1) but only “everyday”
distances and gravitational fields, i.e. at λC/L ≪ 1 and ϕg/c

2 ≪ 1.

• Quantum mechanics holds at small distances but, in its basic form, only at
everyday speeds and gravitational field strengths.

• The general theory of relativity (GTR) accurately describes the physical
world at large gravitational field strengths. Happily, the general theory of
relativity (as the name might suggest) generalizes the special theory of relativity,
i.e. the GTR covers everything described by the STR, in addition to large
gravitational fields.

• Quantum field theory (QFT) is a generalization of quantum mechanics
and special relativity and accurately describes both small distances and large
speeds.

• Theories of small distances and large gravitational fields are collectively called
quantum gravity. This part of the physics landscape is still poorly understood
and a topic of active research; there is not a yet a universally-accepted theory
of quantum gravity.

Development of quantum gravity is plagued by both (i) a lack of measurements
due to its extreme physical conditions (subatomic particles and black holes
are notoriously challenging to measure, let alone simultaneously) and (ii) the
lack of a well-established mathematical formalism with which to describe the
theory. In other words, we lack both the mathematics to formulate theory and
the measurements to test it.

To illustrate the experimental problem, one current theory of quantum gravity
involves eleven dimensions; confirming this theory would require (somehow)
a transition from 11 dimensional space to the three dimensional space of our
everyday lives. As you can imagine, that poses quite an experimental challenge!

The main lesson here is that classical physics covers only a small regime of the vast
and diverse physical phase space, plenty of which, particularly in the more exotic
corners of small distances and large gravitational fields, remains poorly understood.

7
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1.2. A tour of the mathematics used in this course

This course will cover only the “center” of the physical phase space shown in
Figure 1, in which Newtonian mechanics, classical thermodynamics, and classical elec-
trodynamics accurately describe the physical world. We will, however, (for example
when studying electrical conduction) to some extent consider the connection between
the microscopic and macroscopic worlds, and aim to describe physical processes in
both worlds and find connections between them. We will only qualitatively mention
the deviations of special relativity from Newtonian mechanics at large speeds, and
leave the other exotic theories for future courses.

1.2 A tour of the mathematics used in this course

Before solving problems, we first summarize the mathematical and physical quantities
with which we will operate. We will represent physical quantities mathematically
mostly in terms of scalars and vectors. Vectors have both magnitude and direction
in space and are well-suited to describing physical processes in the three-dimensional
Euclidean space of classical physics. Both the magnitude and direction of a vector
can change over the course of a physical process. Thus, we need a mathematical
formalism describing change of both scalars and vectors.

The change of scalars is governed by basic differential and integral calculus, which
forms the backbone of the Newtonian physics covered in this course. As an example,
the speed v(t) of an object is related to the total distance s(t) traveled by the object
according to

v =
ds

dt
and s =

ˆ
v dt, (1.9)

where the derivative and integral are performed with respect to time.
The change of vector quantities is governed by a branch of mathematics called

vector calculus, which is the generalization of scalar differential and integral calculus
to vector quantities. Vector calculus is covered formally in the second-year course
Matematika 3, but we will dabble with it in this course as well. For orientation, here
are some physical examples of calculus involving vector quantities:

• The momentum p(t) of an object of mass m with position vector r(t) is

p = m
dr

dt
. (1.10)

• The work8 W done by a force F as the force’s point of application moves along
a curve in space from position r1 to r2 is given by the line integral

W =

ˆ r2

r1

F · ds. (1.11)

• The power P (energy per unit time) through a surface S through which flows
heat current density j (energy per unit time per unit area) is given by the
surface integral

P =

¨
S
j · dS. (1.12)

8I’ve denoted work by the symbol W , from the English word “work”, because this is most common
in the modern scientific literature. In Slovenia, at least in introductory courses, work is commonly
denoted by A, from the German word “Arbeit”.

8
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1.3. Physical quantities

Don’t worry if you don’t understand all of the equations quite yet—you’ll gain
experience with them in this course, and learn them formally when your mathematics
courses catch up with our curriculum over the next few months. The goal here is
just to give a taste of how calculus is used to formulate the concepts of physics.

1.3 Physical quantities

After our quick tour through the mathematical formalism of vectors and calculus, we
now consider how physical quantities are described and what they represent. For our
purposes, a physical quantity is a quantity that can be quantitatively measured (i.e.
measured with numbers).

1.3.1 Base quantities and the 2019 redefinition of units

Physics involves seven base quantities from which all other physical quantities are
derived. These base quantities are time, distance, mass, electric current, temperature,
amount of substance, and luminous intensity. These are shown in Table 1. The final
quantity—luminous intensity—occurs rarely outside of photometry, and we will not
study it in this course.

Different physical quantities are distinguished by their units. The International
System of Units (abbreviated “SI”) established by an international organization
called the International Bureau of Weights and Measures defines the SI base units
for each of the base quantities; we will quote these units shortly. But first, a (recent)
historical aside: in May 2019, all SI units were completely redefined in terms of only
physical constants. Using physical constants is good! Namely, units defined in terms
of physical constants are more fundamental and more stable than arbitrarily-defined
prototypes of human creation.

Quantity Unit Unit symbol

Time second s
Distance meter m
Mass kilogram kg

Electric current ampere A
Temperature kelvin K

Amount of substance mole mol
Luminous intensity candela cd

Table 1: The seven base quantities and their SI base units (discussed shortly).

As an example of the problems associated with human-created standards, the
International Prototype of the Kilogram (a cylinder made of a platinum-iridium alloy
whose mass served as the definition of the kilogram before the 2019 redefinition)
was found to have a fluctuating mass (of the order ∆m ∼ 10 µg); we still lack a
universally accepted explanation why. As a more amusing example, the yard (an
imperial unit roughly equal to the meter) was once defined as the length from the
nose to the thumb of the outstretched arm of King Henry I of England. Not exactly
a scientifically rigorous definition of distance!

9
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1.3. Physical quantities

1.3.2 The SI base units

We now summarize the base quantities, their units, and the natural constants on the
basis of which the units are defined.

1. The SI base unit of time is the second and is defined in terms of the unper-
turbed, ground state hyperfine transition frequency of the cesium-133 atom.
Concretely, the second (symbol s) is defined such that this transition frequency
takes exactly

∆νCs ≡ 9 192 631 770 s−1. (1.13)

The relevant physics will be more clear after Moderna fizika 1, but the takeaway
here is that the second is based on a precise and fundamental natural process—
the cesium atom’s transition frequency is an extremely consistent timekeeper.

Previously, the second was defined in terms of the Earth’s rotation cycle over
the course of a day. Aside from being rather anthropocentric, this definition
was plagued by instabilities in the Earth’s rotation.

2. The SI base unit of distance is the meter. The meter (symbol m) is based
on the speed of light in vacuum c and the above-defined second. The meter is
defined such that speed of light in vacuum is exactly

c ≡ 299 792 458m s−1, (1.14)

assuming the second is defined in terms of ∆νCs.

3. The SI base unit of mass is the kilogram (symbol kg) and is based on a
universal constant called Planck’s constant, denoted by h. The kilogram is
defined such that Planck’s constant is exactly

h ≡ 6.626 070 15 · 10−34 kgm2 s−1, (1.15)

assuming the second is defined in terms of ∆νCs and the meter in terms of c.
You’ll hear more the Planck constant in second-year courses.

Actually implementing the relationship between the kilogram and Planck’s
constant involves an extremely precise electromechanical scale called a Kibble
balance. You can read more about this in the BIPM’s publication “Mise en
pratique for the definition of the kilogram” available on the BIPM’s page on
the practical realization of the definition of the base units.

4. The SI base unit of electric current is the ampere (symbol A) and is based
on the elementary charge (the charge of single proton). The ampere is defined
such that the elementary charge is exactly

e0 ≡ 1.602 176 634 · 10−19As, (1.16)

assuming the second is defined in terms of ∆νCs.

5. The SI base unit of temperature is the kelvin and is based on a constant
called the Boltzman constant, denoted by kB. The kelvin (symbol K) is defined
such that the Boltzman constant is exactly

kB ≡ 1.380 649 · 10−23 kgm2 s−2K−1, (1.17)

10
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1.3. Physical quantities

assuming the kilogram, meter, and second are defined in terms of natural
constants as described above.

6. The SI base unit of amount of substance (e.g. the number atoms in a sample
of carbon, the number of gas particles in closed chamber of gas, etc.) is the
mole and is based on the Avogadro constant NA. The mole (symbol mol) is
defined such that Avogadro is exactly

NA ≡ 6.022 140 76 · 1023mole. (1.18)

In other words, one mole of “stuff” contains exactly 6.02214076·10−23 elementary
entities.

7. For the sake of completeness, the SI base unit of luminous intensity (which
no one really uses besides photometrists, and we won’t mention further in this
course) is the candela. If you feel inspired, you can read about its formal
definition in the SI Brochure, or just check the Wikipedia article on the candela.

1.3.3 Derived quantities

Derived quantities are constructed by combining base quantities through multipli-
cation and division. We already encountered some derived quantities above. For
example, speed is, mathematically, the quotient of distance and time, and the speed
of light was quoted above in meters per second, i.e. units of distance per units of
time.

Derived quantities deemed important enough are assigned their own derived unit ;
for example, energy is assigned a unit called the joule. Derived units are convenient:
they save us from writing out long strings of base units. For example, you will
probably agree that it is more convenient to quote energy in joules than in the
equivalent base unit combination kgm2 s−2. Some of the first derived quantities that
we will meet in this course, together with their units and conventional symbols, are
given in Table 2.

Quantity Symbol SI Base Unit Derived Unit

Velocity v ms−1 -
Momentum p kgm s−1 -
Acceleration a ms−2 -

Force F kgm s−2 N (newton)
Energy E kgm2 s−2 J (joule)
Power P kgm2 s−3 W (watt)

Table 2: A few of the first derived physical quantities we will encounter in mechanics,
together with their SI base units and derived unt, if applicable.

1.3.4 Measuring average and instantaneous quantities

We go directly to an example: measuring a quantity called volume flow rate. Physi-
cally, volume flow rate represents the volume of “stuff” (typically fluid) moving past
a region of space (such as a given point in a hose) per unit time.

11
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1.3. Physical quantities

Suppose we wish to measure the volume flow rate of water out of a pipe’s faucet.
If our tools are limited to everyday objects, we could measure the VFR using a
bucket of known volume9 ∆V and a stopwatch. The measurement proceeds in two
steps:

(a) Simultaneously start the stopwatch and place the (empty) bucket under the
faucet and observe the rising water level in the bucket as the bucket fills.

(b) Stop the stopwatch when the bucket is full and record the time interval ∆t
between the stopwatch stop and start times.

This measurement gives us the time needed to fill the known bucket volume. From
∆V and ∆t, we determine the average volume flow rate out of the faucet over the
course of the measurement via

Q =
∆V

∆t
. (1.19)

We stress that Q is a single scalar quantity10 representing the average volume flow
rate over the course of the entire measurement. It contains no information about the
volume flow rate at a specific time during the measurement process.

Alternatively, suppose we have an advanced measurement instrument capable
of continuously measuring the small volume of water dV leaving the faucet every
small time interval dt (e.g. of milli- or microsecond order). The continuous stream
of {dV,dt} measurements at each point in time until the bucket is full can be used
to approximate the instantaneous volume flow rate

Q(t) =
dV

dt
. (1.20)

Importantly, Q(t) gives the VFR through the faucet as a function of time throughout
the measurement, while Q from Equation 1.19 is a single scalar value giving the
average VFR over the course of the entire measurement. To be clear, however, both
Q and Q(t) represent the same physical phenomena (i.e. flow of fluid volume with
respect to time) and have the same units (volume per time). Thus, Q and Q(t) still
correspond to the same physical quantity, i.e. volume flow rate.

9If unknown, we could estimate the bucket’s volume with a tape measure and geometrical
measurements. Better yet, if we had a scale handy, we could measure the mass of water needed to
fill the bucket and convert to volume using water’s known (room temperature and pressure) density
ρ ≈ 1 g cm−3.

10I have used the symbol Q to denote volume flow rate, which might seem rather arbitrary at first
glance. I agree. But Q is the conventional symbol for VFR and I figure it is better to encounter it
sooner than later.

12
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2.1. Physical models

2 Mechanics

Mechanics is the field of physics that describes and predicts the motion of bodies.
Mechanics divides into two sub-fields:

1. kinematics, which describes the motion of bodies, and

2. dynamics, which predicts the motion of bodies.

Kinematics is observational (i.e. quantifies a body’s current motion) while dynamics,
which is more powerful, can predict a body’s future motion given its current state.

2.1 Physical models

Real-life physical objects are complicated—they are asymmetric, anisotropic, de-
formable, have non-homogeneous mass distributions, and so on. Exactly describing
and predicting their motion in all its detailed complexity is difficult—in fact, exact
analytical solutions are often impossible. Instead, physicists make a compromise:
we approximate bodies and physical systems with simple models that are relatively
easy to analyze, at the expense of a perfectly exact prediction. A simplification of a
physical system that...

1. dramatically improves analysis and also

2. preserves a result reasonably in agreement with real-life behavior...

is called a physical model. Models aim to preserve only those properties of an
object that are essential to predicting its motion and remove secondary details that
significantly complicate analysis but produce only small corrections in observed
motion.

Our plan in this chapter is to first study the kinematics and dynamics of a
few useful models in a theoretical sense, and then apply the developed theory to
approximate the motion of real-life objects. Certain models are particularly well-
suited to mechanics (and many other branches of physics, too), and you will encounter
them in any standard physics course. These are:

1. the point mass,

2. the system of point masses,

3. the rigid body, and

4. the linearly deformable body.

We will define these models shortly. Each is a successively better approximation
of real-life objects, but each is also more difficult to work with analytically. In
this course we will begin with the mechanics of a point mass, which we will later
generalize to a system of point masses. We introduce rigid bodies in our treatment of
rotational mechanics, and briefly cover deformable bodies in the lectures on elasticity
and deformation. Rigid bodies are covered in much more detail in the second-year
course Klasična mehanika, while deformable bodies and continuous media are covered
in the third-year elective course Mehanika kontinuov.
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2.1.1 The point mass

The simplest and most fundamental model is the point mass: a hypothetical object
with its entire mass concentrated at a single point in space. To specify a point mass’s
state, you need to describe only its mass and its position at a single spatial coordinate.
Importantly, you don’t have to worry about a point mass’s size, geometry, orientation
in space, mass distribution, and so on—a spatial coordinate and the mass are all
you need, at least for kinematics applications. In the context of dynamics, if you
also specify the point mass’s velocity at any given moment in time (in addition to
its mass and position), you can predict everything there is to know about its future
state within the scope of Newtonian mechanics.

Physical point masses do not occur in nature in the sense that you cannot walk
down the street and find a body with infinitesimal size but finite mass. The closest
physical objects to point masses, within the scope of current scientific knowledge, are
elementary particles with no (currently) known internal structure, such as electrons
or quarks. But this might be a limitation of current experimental technology rather
than a fundamental truth. For our purposes, it suffices to remember that perfect
point masses do not occur in nature, although some elementary particles currently
appear to come close.

Validity of the point mass model

A finite-sized object may be treated as a point mass if the object’s size is insignificant
in the analysis—this is often the case when the ambient physical system or the
distance traveled by the object is much larger than object itself. For example, the
Earth on the scale of the solar system, an electron on the scale of an atomic nucleus,
or an ion on the scale of a particle accelerator are all excellent candidates for a point
mass approximation.

A word of caution: The validity of a point mass (or any other physical model) in
describing a physical object depends crucially upon context and scale. For example,
the Earth is very well described as a point mass on the scale of the solar system (for
example in the context of predicting planetary orbits using Newtonian gravitation),
but the Earth is certainly nothing like a point mass from the perspective of a human
being walking on its surface.11 Note the difference in scales: the Earth’s size is
insignificant on the scale of the solar system but very large on the scale of a human
being. A general statement like “we can model the Earth as a point mass” is not
well defined—you must say “we can model the Earth as a point mass at XYZ scale
in the context of ABC analysis”.

To conclude, here are a few miscellaneous comments about point masses:

• Within the realm of experimental error, a point mass approximation and an
exact analysis of a body may be indistinguishable.

• Spherically-symmetrical objects under the influence of inverse square laws (such
as the gravitational and electrostatic forces) behave exactly as point particles.

• The terms “point particle” and “point mass” are often used interchangeably.

11Well, its gravitational field actually comes pretty close—more on this in the lectures on
gravitation—but at least the Earth’s geometry is not remotely point-like in this context.
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2.1.2 Other physical models

In passing, we now briefly define the other common physical models mentioned in
this chapter’s introduction.

• A system of point masses is exactly what it sounds like—a set of multiple
point masses. This model can be useful for describing mutually-interacting
(often spherical) objects. The Earth-Moon-Sun system, for example, is well-
described as a system of point masses (a point-mass approximation is valid
because the distances between the planets are much larger than the planets
themselves).

Alternatively, when the number of points is large, systems of point masses
can be used to model continuous objects, such as a ball, disk, or rod.12 This
approximation works particularly well if the object is homogeneous, and we
will return to this concept in the lectures on center of mass, center of gravity,
and moment of inertia.

• A rigid body is an object in which the relative distances between all constituent
points are constant. In practice, this means a rigid body cannot deform when
subject to outside forces—all points in the body retain their original orientation
no matter how hard you push it. For orientation, on the scale of everyday
stresses, a slab of concrete is very well-described as a rigid body, while human
muscle or a piece of gelatin are poor examples of rigid bodies—both deform
if you poke or squeeze them. Note that a rigid body and a system of point
masses are not mutually exclusive—any system of point masses in which the
distances between all points is fixed is also a rigid body.

Rigid bodies are the canonical model in the elementary theory of rotational
mechanics—we will return to them when studying rotation, and you will study
them in more detail in the second-year course Klasična mehanika.

• A linearly deformable body is a generalization of the rigid body in which
the relative distances between constituent points are allowed to vary in response
to outside stresses, but the resulting deformation must be linear in the applied
stress. Linearly deformable bodies are the canonical model in the elementary
theory of elastomechanics, and are covered in detail, using a tensor formalism,
in the third-year course Mehanika kontinuov. We will cover them only briefly
in the lectures on deformation using scalars and vectors.

2.2 Kinematics

Kinematics is a quantitative description of the motion of bodies. After covering the
description of motion using kinematics, we will be equipped to predict motion using
dynamics.

12In practice, numerical computer simulations treat physical objects as systems of discrete points.
Although the number of points can be very large on modern hardware, it is still finite, since no
physical computer can store in memory the theoretically infinite number of points needed to describe
a continuous body.
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2.2.1 Position and trajectory

Position is a vector quantity, conventionally denoted by r, that specifies a body’s
location in space at a given point in time. But we usually aren’t satisfied with
knowing a body’s position at a just single point in time—we want to know the
position for all times (or at least over an interval of time). In the language of
kinematics, this desired quantity is called a trajectory, which is a body’s position in
space as a function of time.

Position, in the three-dimensional Euclidean space of everyday life and classical
physics, is fully specified by a three-dimensional position vector r ∈ R3. A trajectory,
which describes how a body’s position vector changes over time, is specified by a
vector-valued function r(t). A trajectory associates with every time t (a scalar quantity
t ∈ R) a corresponding position vector r (a three-dimensional vector r ∈ R3).13

Coordinate representation of position

After specifying a coordinate system and basis for the space R3, a position vector r
can be represented with three coordinates, for example the (x, y, z) coordinates of the
Cartesian coordinate system you are probably familiar with from high school. In a
Cartesian coordinate system, a position vector and a trajectory would be represented
in coordinate form as

r = (x, y, z) and r(t) =
(
x(t), y(t), z(t)

)
. (2.1)

For the purposes of this course, unless explicitly stated otherwise, we will work in
three-dimensional Euclidean space and perform analysis in a Cartesian coordinate
system using the standard basis. Translated to everyday language, this means we
will continue using the (x, y, z) coordinate system you are familiar with from high
school, and, if desired, you can forget about coordinate systems, bases, and basis
vectors until Matematika 2.14

Note: distinguishing r and r

In your study of physics you will often encounter both the symbols r and r. These
always represent different physical quantities:

• r is a vector quantity and, nearly universally, is used to represent a position in
three-dimensional space.

• r is a scalar quantity usually used to represent a body’s distance from a coordi-
nate system’s origin. In this usage, r would be the length (also “magnitude”
or “norm”) of a position vector, i.e. r = |r|.15

13To make a connection to the formal notation of real analysis introduced in Matematika 1, you
would define a trajectory as a vector-valued, single-variable function r : R → R3 with t 7→ r(t).

14In general, representing a vector in terms of coordinates requires specifying a basis and coordinate
system for the ambient vector space, which in this course will always be the 3D Euclidean space
familiar from everyday life—this space is called R3 in the notation of mathematics. You will learn
about bases and coordinates formally in Matematika 2 and get practical knowledge with common
coordinate systems in Proseminar A/B. The point, for now, is to know that coordinate systems
other than the (x, y, z) Cartesian system familiar from high school exist, and r = (x, y, z) is just a
special case of writing a vector in coordinate form.

15The mathematically correct notation for a vector norm would actually be ∥r∥ (with |·| reserved
for the magnitude of scalars) but physicists are sloppy and use the absolute value sign |r| for vector
magnitudes, too. If you ever see the absolute value of a vector in a physics context, you can assume
it denotes the vector’s magnitude (i.e. the length or norm).
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The symbol r can also denote the radial coordinate in a spherical coordinate
system—you’ll learn more about this in Proseminar A/B. Loosely, the net
effect is the same: r represents the scalar distance from the origin.

Plotting trajectories

In one spatial dimension, or for a single coordinate, we conventionally show a
trajectory by plotting the coordinate (on the ordinate axis) as a function of time (on
the abscissa), while two-dimensional trajectories are often plotted in a coordinate
plane with time as a parameter. Three-dimensional trajectories can also be plotted
parametrically in three dimensions, but the result is often difficult to instructively
interpret.

TODO: create example plots. Some ideas (for example):

• z(t) for a particle in free fall

• (x(t), y(t)) parametrically for a particle in an EM field

• r(t) parametrically for the moon’s orbit around the earth

2.2.2 Displacement

Consider a particle with initial position r1 and final position r2. The difference of
these two vectors is called a displacement and is denoted by

∆r = r2 − r1; (2.2)

it is conventional to formulate displacement as final position minus initial position.
Displacements have a very useful property: a displacement between two positions is
the same regardless of the coordinate system origin with respect to which the positions
are measured. This is because any relative offset of a coordinate system’s origin is
canceled in the difference of r2 and r1.

Differences and differentials

Consider a moving object traveling through space along some trajectory r(t), and
imagine repeatedly observing the object’s position. Now imagine measuring this
position more and more frequently—over smaller and smaller time intervals. Of
course, in practice you can’t measure over arbitrarily small times—the smallest
time interval can be as short, but no shorter, than the available experimental
equipment can accurately measure. This experimentally bounded time interval
between successive position measurements is a finite, measurable quantity, and is
mathematically classified as a difference—we denote it by ∆t. Associated with each
interval ∆t is the corresponding displacement ∆r between the body’s position at
the, say, i-th and (i+ 1)-th measurement, i.e. the change in position between two
subsequent measurements. Interpreted physically, ∆r encodes the net direction and
distance the body moved between two measurements. Like ∆t, the difference ∆r is
finite and measurable and (assuming the body is not at rest) can only be as small,
but no smaller, as the available experimental equipment allows.

But in theory—and this concept might be familiar from a differential calculus
course from high school—the time interval between successive displacement measure-
ments, and thus the corresponding displacement, can be made arbitrarily small. So
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small, in fact, that successive measurements are separated by nothing more than a
hypothetical instant. This “infinitely small” time interval is mathematically classified
as a differential, and we denote it by dt. The associated differential change in position
during the time dt is denoted by dr. Differentials are infinitesimal—they are so small
that they exist only in theory, but are too small to be actually measured. Loosely, it
may help to think of dt as the limit of the observation interval ∆t as ∆t approaches
zero, i.e.

dt = lim
∆t→0

∆t. (2.3)

Note that if you are not familiar with limits and differentials from high school, it
would be completely understandable if these concepts don’t yet make sense on the
basis of the above explanations alone. We are covering the material much faster
than one would in a dedicated differential calculus course, since most students will
have already seen the material in high school. If that is not the case for you, don’t
worry—you will catch up soon in Matematika 1, and for now just try to understand
the general concepts.

Relating infinitesimal and differential quantities

Our goal in this section is to show how to analytically relate differences—which are
finite—and differentials—which are infinitesimal.

• Let t0 and tN denote the time at the first and last measurement, and let
r0 = r(t0) and rN = r(tN ) denote the positions of the measured body at the
initial and final times t0 and tN .

• Let ∆t = tN − t0 and ∆r = rN − r0 denote the differences in initial and final
time, and initial and final position, for the entire experiment.

• Let ∆ti = ti − ti−1 and ∆ri = ri − ri−1 denote the differences in time and
position between the i-th and (i− 1)-th measurements.

We can then relate the net changes in time and position ∆t and ∆r for the entire
experiment to the changes over individual measurements according to

∆t =

N∑
i=1

∆ti and ∆r =

N∑
i=1

∆ri. (2.4)

Next, consider the (theoretical) limit of infinitely frequent measurements, meaning
that N → ∞ and ∆ti → 0 for all i. In this limit case (2.4) generalizes to

∆t = lim
N→∞

N∑
i=1

∆ti
(a)
≡
ˆ tN

t0

dt and ∆r = lim
N→∞

N∑
i=1

∆ri
(b)
≡
ˆ rN

r0

dr, (2.5)

where in (a) and (b) we have written the infinite sums in a more convenient notation
using integral symbols. Equation (2.5) is important—it provides a formalism for
converting between finite quantities and differentials. Loosely, but instructively, we
can interpret the relationship between differentials and differences in (2.5) as follows:

(a) First, for orientation, we stress that the differences ∆t and ∆r are finite
quantities (i.e. macroscopic and measurable), while the differentials dt and dr
are infinitesimal quantities (i.e. so small they exist only in a theoretical sense).
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(b) We then interpret (2.5) as formalizing the intuitive idea that a sum of infinitely
many infinitesimally small quantities produces a finite quantity.

Mathematically, the procedure we have just performed is called Riemann integration—
you will study it formally in Matematika 1 in the chapters on integral calculus. Limits
and infinite sums like in (2.5) raise questions of convergence, and in Matematika 1
you will cover the conditions that the functions t and r must satisfy for the sums in
(2.5) to be well-defined. Fortunately, physical quantities in Newtonian mechanics are
well-behaved, and in this course we won’t have to worry about convergence. For our
purposes, for the time being, we are satisfied with the following ideas:

• We convert from between differentials and differences (e.g. between dr and
∆r) through a sum of infinitely many infinitesimal quantities, which is formally
called a Riemann integral.

• If a sum of individual differences (e.g. ∆ti or ∆ri) converges to a finite net
quantity (e.g. ∆t or ∆r) for ever more frequent measurements (larger N)
and continually smaller times and displacements, within the scope of physical
measurement, we’ll assume the sum’s limit, as defined in (2.5), exists and is
well-defined.

Total distance traveled

Suppose you travel from Ljubljana to Cambridge and then return to Ljubljana. Since
the journey begins and ends in Ljubljana, the journey’s displacement is zero, but—as
anyone who has made the journey can immediately tell you—the total distance
traveled is certainly not zero. In fact, the net displacement along any trajectory
with the same start and end position (for example any closed loop) is zero, but the
trajectory’s total arc length could take on any value. Motivated by the wish to better
distinguish such trajectories, we associate total distance traveled with a new physical
quantity, typically denoted by s. Precisely, the total distance s traveled along a
trajectory r(t) beginning at initial position r1 and ending at final position r2 is

s =

ˆ r2

r1

|dr| (a)=
ˆ r2

r1

ds, (2.6)

where in (a) we have introduced the shorthand notation ds = |dr| to denote the
magnitude of the vector differential dr.16 Equation (2.6) formalizes a simple idea: to
get the total distance traveled over an entire journey, divide the journey into many
small steps ∆r, record the length ds = |∆r| of each step as you go, and add the
lengths together. Intuitively, imagine following a trajectory through space from r1
to r2 and maintaining a running sum of your step lengths as you go. We stress that
s is a scalar quantity—this follows (i) intuitively because total distance traveled is
just a single number and (ii) mathematically because integrating a scalar magnitude
|dr| produces a scalar result.

Computing total distance traveled

16The use of ds (instead of dr) to represent the magnitude |dr| is intentional, since dr can be
confused with the differential of the radial coordinate in spherical coordinate systems, while ds is
exclusively used for total distance traveled.
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In Cartesian coordinates, we compute ds with the Pythagorean theorem,

ds2 = dx2 + dy2 + dz2, (2.7)

where in this context ds2 is shorthand for (ds)2 and not for d(s2). In other coordinate
systems the expression for ds can be more complicated, and in two or more spatial
dimensions practical computation of (2.6) involves a line integral, which is a subject
we leave for Matematika 3. You won’t be expected to compute line integrals in this
course; the point for now is to introduce the concept of total distance traveled and
show how one formalizes the idea, as in (2.6), in the language of vector calculus.

2.2.3 Velocity

Recall from Section 2.2.2 the idea of observing a body moving through space along
some trajectory r(t), and continuously measuring the body’s position over smaller
and smaller time intervals ∆t. Let ∆r denote the body’s change in position over a
measurement interval ∆t. Then associated with each measurement pair (∆r,∆t) is
an average velocity, defined as

v =
∆r

∆t
. (2.8)

Interpreted physically, v encodes in which direction and how fast a body moved
between the two different positions and times associated with the differences ∆r and
∆t. From vector algebra, a vector’s direction remains the same after multiplication
or division with a scalar, so v has the same direction in space as the displacement
∆r (since ∆t is a scalar). And because the time interval ∆t carries a physical unit,
i.e. time, the quotient ∆r/∆t is a new physical quantity—which we have already
defined as velocity—with units of distance per time (meters per second in SI units).

Instantaneous velocity

The question that naturally arises next is:

If (2.8) gives a body’s velocity between two different positions and times
along a given trajectory, what is a body’s velocity at every position and
time?

The desired quantity is called instantaneous velocity and is conventionally denoted
by v(t). To determine velocity at every point on a given trajectory, one observes the
average velocity v = ∆r/∆t over smaller and smaller time intervals—mathematically,
in the limit as ∆t → 0. Intuitively, this just means observing the moving body’s
position at every possible instant in time. In any case, instantaneous velocity is
defined as

v = lim
∆t→0

∆r

∆t
=

dr

dt
. (2.9)

In Cartesian coordinates, instantaneous velocity is represented component-wise as

v = (vx, vy, vz) =

(
dx

dt
,
dy

dt
,
dz

dt

)
. (2.10)

Convergence of the difference quotient

The limit in (2.9) raises the question of convergence. Loosely, the expression ∆r/∆t
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as ∆t → 0 is essentially the quotient 0/0, which is undefined in general. But in the
scope of physics, the limit in (2.9) exists and converges to well-defined velocity (at
least on physical grounds this is obvious: any physical object’s velocity is always
finite—you cannot walk down the street and encounter a body with infinite velocity).
On mathematical grounds, the limit defining v exists under the assumption that the
trajectory r(t) is a continuously differentiable function of time.

You will study the existence of limits and difference quotients formally using the
tools of real analysis developed in Matematika 1, but in classical physics there is not
much to worry about. Because physical quantities are generally well-behaved, we
can safely assume expressions like (2.9) are well-defined. That said, it is important
to mention the general issue of convergence at least once.17

In the language of differential calculus, which you have probably encountered in
high school and will soon cover in Matematika 1, the instantaneous velocity from
(2.9) is called the first derivative of position with respect to time. Mathematicians
and physicists have come up with various ways to write derivatives, all of which are
equivalent. Here are some examples in the case of velocity:

v =
dr

dt
= ṙ(t) = r′(t). (2.11)

In physics, a dot over a quantity, as in ṙ, universally denotes the quantity’s derivative
with respect to time. You’ll see plenty of this dot notation in the second-year course
Klasična mekanika. The notation r′(t) is more common in mathematics—a primed
function denotes the function’s derivative with respect to its argument. When a
function’s argument is time, such as r(t), the notations ṙ(t) and r′(t) are equivalent.

Finally, we note that the direction of the instantaneous velocity vector v at time
t is tangent to the corresponding trajectory r(t). Loosely, this is just a generalization
of average velocity v being parallel to the corresponding secant line ∆r; in the limit
of instantaneous velocity, the secant line to the trajectory converges to the tangent
line. More formally, you will show that velocity is tangent to trajectory in the lectures
on space curves in Matematika 1 and Matematika 3.

Velocity and differential equations

We now return to the concept, first introduced in (2.5), of converting between finite
and infinitesimal quantities. Specifically, we will show how, given a particle’s velocity
v(t), it is possible to recover the particle’s trajectory by solving a differential equation
involving the infinitesimals dr and dt.

We begin with the definition of velocity, v = dr/dt, and, loosely, imagine
multiplying through18 by dt to get

v =
dr

dt
−→ dr = v dt. (2.12)

17In physics questions like these don’t bother us too much, largely because they don’t have too—
physicists are blessed with quantities described by well-behaved functions. We are more interested
in the practical use of given equations instead of the details of their existence. In fact, for better or
worse, physicists often take pleasure in a tongue-in-cheek disregard for mathematical rigor. But this
is of course tongue-in-cheek, and any serious physicist will have a strong training in mathematics.

18Formally, multiplication by differentials is not quite the same as regular scalar multiplication,
even though the process appears analogous. But the details are beyond the scope of this course—you
will discuss this in Matematika 1.
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Caution: when manipulating equations involving differentials, the left- and right-hand
sides of the resulting equality must be of the same multiplicity in the differentials. For
example, dr = v dt is a valid expression (both sides involve first-order differentials)
while dr = v · t is not (the left-hand side contains a first-order differential and the
right-hand side does not contain any differentials). Remember that a differential is
an infinitesimally small quantity; loosely, a differential on one side of an equation
but not the other would be like equating a finite value to zero.

In any case, to recover a finite-valued trajectory r(t) from the differential equation
dr = v dt, we must integrate both sides of the equation, written schematically as

ˆ
dr =

ˆ
v dt. (2.13)

Of course we must also specify the integration limits, and in this context there are
two common choices:

(a) One could integrate over a definite interval, say from t1 to t2 for time and
r1 ≡ r(t1) to r2 ≡ r(t2) for position. In this case both the upper and lower
integration limits are fixed values.

(b) Alternatively, one integrates over an indefinite interval in which the lower
limits, say t0 and r0 ≡ r(t0) are fixed, but the upper limits are allowed to vary
arbitrarily and are written as the generic functions t and r(t).

Depending on the notation (we will comment on this shortly), these two choices
could be written

ˆ r2

r1

dr =

ˆ t2

t1

v(t) dt (2.14a)

ˆ r(t)

r0

dρ =

ˆ t

t0

v(τ) dτ. (2.14b)

In either case the limits of integrations over time and position must correspond. For
example, in (2.14a) the position limit r2 = r(t2) is the position at the time limit t2,
just like r(t1) is the position at time t1.

We now comment on the notation in (2.14b). When, as in (2.14b), the symbol
for the variable of integration would clash with the symbol for a limit of integration,
one should change the integration variable to a different symbol. Since that might
sound vague, here is an example of what not to do:

ˆ r(t)

r0

dr =

ˆ t

t0

v(t) dt. (example of poor notation) (2.15)

Notice how the upper integration limits—r(t) and t—clash with the variables of
integration, which are also written as r and t.19 Although admittedly somewhat

19On the RHS the clash involving time t is immediately obvious; on the LHS, even though the
limit r(t) and differential dr don’t match explicitly, we must recall that the differential dr is a
function of time and could really be written dr(t), in which case the clash with the limit r(t) is
clear. We generally don’t write differentials’ functional dependence explicitly, since equations would
get too cluttered, and infer their dependence on other variables from context.
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pedantic, this sort of conflict means the integral is not mathematically well-defined.
To resolve this clash, one modifies the symbol used for the integration variable—two
common choices are adding a tilde, e.g. r̃ to replace r, or replacing the letter with
its Greek equivalent, e.g. ρ for r or τ for t. The result would be

ˆ r(t)

r0

dr̃ =

ˆ t

t0

v(t̃) dt̃ or

ˆ r(t)

r0

dρ =

ˆ t

t0

v(τ) dτ, (2.16)

just like in (2.14b). Of course, since physicists are sloppy with notation, you will
see plenty of examples of (2.15) during your course of study, but keep in mind that
(2.16) is a better choice, since the integration variable and limit don’t conflict. And,
if you see strange Greek letters appearing in integral expressions, you now know why.

After commenting on notation, we now return to the initial goal of solving (2.14)
for a trajectory r(t); for review, (2.14) reads

ˆ r2

r1

dr =

ˆ t2

t1

v(t) dt (2.17a)

ˆ r(t)

r0

dρ =

ˆ t

t0

v(τ) dτ, (2.17b)

We treat the two cases separately:

(a) Integrating the left-hand side of (2.17a) gives

r2 − r1 =

ˆ t2

t1

v(t) dt =⇒ r2 = r1 +

ˆ t2

t1

v(t) dt (2.18)

Interpreted physically, (2.18) expresses the final position on the trajectory r2
in terms of the initial position r1 and an integral of velocity over the interval
[t1, t2]. By the way, (2.5), which we met earlier, is an example of this type of
definite integral.

(b) Integrating the left-hand side of (2.14b) gives

r(t)− r0 =

ˆ t

t0

v(t) dt =⇒ r(t) = r0 +

ˆ t

t0

v(t) dt. (2.19)

Interpreted physically, (2.19) gives a body’s trajectory r(t) in terms of an initial
position r0 and an integral of velocity from the initial time t0 to the time t at
which the trajectory is evaluated.

In either case, actually solving for r2 or r(t) requires evaluating the integral of
velocity; this could be anywhere from trivial to analytically impossible, depending
on the functional form of v(t).

2.2.4 Acceleration

Having just introduced velocity—the rate of change of position with respect to
time—it is natural to ask how a body’s velocity itself changes with time. The rate of
change of velocity with respect to time is called acceleration, and is derived in an
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analogous manner to the derivation of velocity in Section 2.2.3—it might be helpful
to revisit Section 2.2.3 now.

Average acceleration

As in Section 2.2.3 and Section 2.2.2 before it, imagine observing a body moving
through space along some trajectory r(t). To derive acceleration, imagine repeatedly
measuring the body’s velocity v(t), and continuously computing the changes in the
body’s velocity ∆v between sequential measurements. Once again, let ∆t denote
the difference in time between subsequent measurements. Then associated with each
measurement pair (∆v,∆t) is an average acceleration, defined as

a =
∆v

∆t
. (2.20)

Interpreted physically, a encodes in which direction, and how quickly, a body’s
velocity changed over the measurement interval ∆t. Note that an immediate, intuitive
interpretation of acceleration is often difficult for people, so don’t worry if it takes
some time to come to terms with the concept. This is probably because the majority
of daily life—besides brief spurts of speeding up or slowing down—is carried out with
constant velocity, or zero acceleration. In any case, you will soon become familiar
with acceleration from your study of mechanics.

Instantaneous acceleration

To derive instantaneous acceleration, just like in the derivation of instantaneous
velocity, one imagines computing average acceleration a = ∆v/∆t over smaller
and smaller time intervals—mathematically, in the limit as ∆t → 0. The resulting
instantaneous acceleration is defined as

a = lim
∆t→0

∆v

∆t
=

dv

dt
. (2.21)

Acceleration is the first derivative of velocity with respect to time and has SI units
of meters per second squared. Acceleration can also be interpreted as the second
derivative of position with respect to time, which is clear if one writes

a =
dv

dt

(a)
=

d

dt

(
dr

dt

)
(b)
=

d2r

dt2
, (2.22)

where in (a) we have used the definition of velocity v = dr/ dt and in (b) we have
introduced the standard notation for higher-order derivatives, which you will soon
encounter in Matematika 1. In Cartesian coordinates, instantaneous acceleration has
the following, equivalent, coordinate representations:

a = (ax, ay, az) =

(
dvx
dt

,
dvy
dt

,
dvz
dt

)
=

(
d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
. (2.23)

Decomposition of acceleration

Consider a body moving along a trajectory through space with velocity v(t) and
acceleration a(t). For the decomposition of acceleration (which we will introduce
shortly) to make sense, let v̂ denote the dimensionless unit vector20 in the direction

20The hat notation (e.g. v̂) is conventionally used to denote dimensionless direction vectors of
unit norm—for example, you might have seen x̂ or ı̂ used to denote the direction in space of the x
axis.
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of the body’s instantaneous velocity,

v̂(t) =
v(t)

|v(t)|
(a)
≡ v(t)

v(t)
, (2.24)

where in (a) we have introduced the common shorthand notation v(t) = |v(t)| for
the magnitude of the body’s velocity—this is easier to write than |v(t)|. In everyday
language, v̂(t) is just the direction in which the body is moving at time t. More
precisely, v̂ is the unit tangent vector to the body’s trajectory and would usually be
written as T in the mathematical context of space curves.

Having introduced v̂, it is often useful to decompose the body’s acceleration a
into two independent components:

1. a component a∥ parallel to the body’s instantaneous velocity, i.e. parallel to v̂,
and

2. a component a⊥ perpendicular to the body’s instantaneous velocity, i.e. per-
pendicular to v̂.

One could then decompose a body’s total acceleration into the vector sum

a = a∥ + a⊥. (2.25)

Both components have instructive physical interpretations:

• The component of acceleration parallel to velocity changes the magnitude of a
body’s velocity. In everyday language, a∥ is responsible for a body speeding
up or slowing down.

• The component of acceleration perpendicular to velocity changes the direction
of velocity. In everyday language, a⊥ is responsible for making a body’s path
twist, turn, or bend as the body moves through space.

Our goal here is just to gain some insight into what acceleration physically does,
and we introduced the a = a∥ + a⊥ decomposition in the hope that changing a
body’s speed and direction of motion are two easily-understood concepts. Note that
actually computing the components a∥ and a⊥ for the general case of arbitrary
three-dimensional motion is more complicated and requires the study of space curves,
a branch of vector analysis. You will analyze this general case in the lectures on
the Frenet-Serret formulas in Matematika 1 and in a dedicated chapter on space
curves in Matematika 3. In this course we will return to the above decomposition of
acceleration in the next lecture, but we will restrict ourselves to the special case of
circular motion.

2.2.5 Kinematics of circular motion

Circular motion is exactly what is sounds like—a body is said to be in circular motion
when the body’s position traces out a circular trajectory in space. Uniform circular
motion is circular motion in which the body travels at constant speed, i.e. with
v = |v| = constant.

Note: Choosing a coordinate system
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Consider a body in circular motion at speed v(t) around a circle of radius R. To
proceed, we must first define a coordinate system in which to perform the analysis.
Since choosing coordinate systems will come up again and again in your studies, now
is a good opportunity to offer some general advice.

• In theory, the choice of coordinate system used to analyze any physical problem
is arbitrary. Coordinate systems are a human construction used to facilitate
analysis—physical objects have no knowledge of them and behave the same
way regardless of the choice of coordinate system. A tossed ball, for example,
will fall back down to the Earth in whatever coordinate system you choose to
analyze it. You’ll get the same physical results in any coordinate system, it will
just be much easier in a well-chosen one. This brings us to the second point.

• In practice, a good choice of coordinate system can dramatically simplify the
mathematical analysis needed to solve a physical problem. There is often
a particular coordinate system well-suited to a particular problem. As your
studies progress, you will find that good coordinate systems tend to reflect a
problem’s symmetries, preferential directions, or other special properties.

Circular motion has a clear special property—the distance to the center of rotation
is constant. To make use of this property, we will analyze the problem in a polar
coordinate system—a two-dimensional, planar system in which a body’s position is
specified by its distance r from the origin and angle φ with respect to a reference
axis, which is usually chosen to align with the Cartesian x axis. In polar coordinates
a general position vector r reads

r = (r, φ), (in polar coordinates) (2.26)

where r and φ are called the radial and angular coordinates, respectively. To analyze
circular motion, we choose a polar coordinate system with the origin aligned with
the center of rotation. The body’s radial coordinate r is then constant and equal to
the circle’s radius R, and the only varying quantity is the body’s angular position
φ(t). Thus, by choosing a polar coordinate system, we have simplified planar circular
motion from a two-dimensional problem into a one-dimensional problem, which is
easier to analyze.

Measuring angular displacement

In physics, angles are most commonly measured in radians, and not in degrees.
Radians should be familiar from high school trigonometry, but we briefly review
them now just in case. Radians are defined such that the angle in radians φ between
two points on a circle of radius R is the ratio of the arc length s between the two
points and the circle’s radius. In equation form,

φ =
s

r
[rad]. (2.27)

The result is dimensionless, i.e. does not carry any of the seven SI base quantities
defined in Section 1.3.2. Because radians are dimensionless, it is common practice to
omit the “rad” unit, but keep in mind that angular kinematics quantities are always
measured in radians, even if the radian unit is not explicitly written. One can convert
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an angle θ measured in degrees to an angle φ measured in radians using the formula

φ rad =
2π rad

360◦
θ◦. (2.28)

Note that angular position φ is periodic with period 2π, in the sense that 0, 2π, 4π,
etc. (or equivalently 0◦, 360◦, 720◦, etc.) correspond to the same angular position in
space. But for angular displacement to be well-defined for changes of more than one
full revolution, angular position φ must increase by 2π for each revolution, instead
of being counted modulo 2π. For example, if one starts at the origin and makes
one and a half full revolutions around a circle, the physically correct new angular
position is φ = 3π, not φ = π.

Angular kinematics quantities

We now introduce angular displacement and angular velocity in analogous way to
their linear counterparts ∆r and v in Sections 2.2.2 and 2.2.3—it might be a good
idea to review those sections now. Angular displacement, denoted by ∆φ, is the
difference between two angular positions. Just like in (2.2) for the linear displacement
∆r between two position vectors, we define the angular displacement ∆φ between
the angular positions φ2 and φ1 as

∆φ = φ2 − φ1. (2.29)

Note that ∆φ (at least for motion in a plane) is a scalar, not a vector like ∆r.
Conveniently, ∆φ is independent of the choice of the angular reference axis, since
any constant offset of the reference axis is canceled in the difference of φ1 and φ2.
This property mirrors linear displacement’s independence of the choice of origin.

Caution: angular displacement is well-defined only if angular positions are taken
to increase by 2π after a full revolution rather than being counted modulo 2π, as
discussed following (2.28). For example, the correct angular displacement of a body
making two and a half revolutions around a circle from φ1 = 0 rad to φ2 = 5π rad is
∆φ = 5π rad, but if φ2 were measured modulo 2π, the angular displacement would
incorrectly be π rad.

We now define angular velocity in analogy to the definition of linear velocity in
Section 2.2.3. Consider a body in circular motion, and imagine repeatedly measuring
its angular position φ and calculating the angular displacements ∆φ between each
position. Let ∆t be the difference in time between two successive measurements of
angular position. Then associated with each (∆t,∆φ) pair is an average angular
velocity defined as

ω =
∆φ

∆t
. (2.30)

As for angular displacement, average angular velocity is only well-defined if angular
positions are counted so as to increase by 2π after a full revolution. Instantaneous
angular velocity is the limit of ω as the observation period ∆t approaches zero, i.e.

ω = lim
∆t→0

∆φ

∆t
=

dφ

dt
. (2.31)

Like φ, angular velocity, at least for our present purposes, is a scalar quantity. In
everyday language, angular velocity describes how fast something is spinning or
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turning about an axis of rotation—it makes sense to speak of the angular velocity of
a car wheel about its axle, for example. In the context of circular motion, a body’s
angular velocity ω describes how quickly the body is rotating around the circle. Note
that instantaneous angular velocity is well-defined whether φ is counted modulo 2π
or not, since ω is defined in terms of infinitesimal angular displacements dφ that
never exceed a full revolution of 2π.

Finally, we define angular acceleration in analogy to the definition of linear
acceleration in Section 2.2.4. Consider a body in circular motion, and imagine
repeatedly measuring its angular velocity ω and calculating the changes in its angular
velocity ∆ω between each measurement. Let ∆t be the difference in time between
two successive measurements of angular velocity. Then associated with each (∆t,∆ω)
pair is an average angular acceleration defined as

α =
∆ω

∆t
. (2.32)

Physically, α encodes how quickly a body’s angular velocity has changed with respect
to time over the measurement period ∆t. Instantaneous angular acceleration is the
limit of α as ∆t approaches zero, i.e.

α = lim
∆t→0

∆ω

∆t
=

dω

dt
=

d2φ

dt2
. (2.33)

Physically, α encodes how quickly a body’s angular velocity is changing with respect
to time at any given instant in time.

Frequency

Frequency is a physical quantity used to describe how quickly periodic phenomena
repeat themselves. Consider a periodic process that repeats itself over a time period t0.
The process’s frequency, denoted by ν or f , is then defined as

ν =
1

t0
, (2.34)

where t0 is the period. Frequency is measured in units of cycles per unit time. Like
the radian, cycles are a dimensionless quantity and are often left implicit, but writing
them explicitly reminds us of a quantity’s cyclically-repeating nature. The SI unit of
frequency is the hertz, denoted by Hz and equal to one cycle per second.

Frequency can be naturally applied to a body in uniform circular motion if one
takes the periodic process to be the body passing some fixed reference point on
the circle. In this context frequency measures the number of revolutions per unit
time. For uniform circular motion, angular velocity ω and frequency ν are related
according to

ω = 2πν =
2π

t0
, (2.35)

where the period t0 corresponds to the time of one full revolution.
Note that frequency does not make sense in the context of non-uniform circular

motion. Keep the following distinction in mind: angular velocity measures the
rate of change of angular position, while frequency measures how often a periodic
process repeats itself. Non-uniform circular motion is not periodic, so a description
in terms of frequency is not well-defined. Angular velocity is the canonical quantity
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for describing the rate of circular motion, and applies to any type of circular motion,
uniform or not. Although frequency can indeed describe uniform circular motion,
frequency is a separate quantity applicable to general periodic processes.

Linear velocity in circular motion

We now consider the following question: what is the linear velocity v of an object
in circular motion? There are multiple ways to answer this—we offer a geometric
argument here that treats magnitude and direction separately, and provide a more
general formulation in terms of unit vectors in Appendix A.1 for interested readers.

Consider a body in circular motion around a circle of radius R, and let r(t)
denote the body’s instantaneous position with respect to the circle’s center. From
geometric considerations, the magnitude of the linear displacement |dr| associated
with a small angular displacement dφ along the circle is

|dr| = |r|dφ. (2.36)

Meanwhile, from the general formulation of speed as v(t) = |v(t)| = |dr/dt|, the
change |dr| for a body moving with speed v(t) is

|dr| = v(t) dt. (2.37)

We then combine (2.37) with |dr| = |r|dφ for the specific case of circular motion
and get

|dr| = v(t) dt = |r| dφ. (2.38)

Finally, we solve for v(t) to get

v(t) = |r|dφ
dt

(a)
= |r|ω(t) (b)

= Rω(t), (2.39)

where (a) uses the definition of instantaneous angular velocity ω = dφ/dt and (b)
uses the fact that the distance from the center of rotation is constant and equal to R
in all circular motion. Equation (2.39) gives the magnitude v = |v| of the velocity of
a body in circular motion. Note (2.39) applies to general circular motion, since the
derivation does not rely on the assumption that ω is constant.

Meanwhile, the direction of velocity in circular motion is tangent to the circle,
since instantaneous velocity always points tangent to trajectory (see the second
paragraph following (2.11)), and circular motion involves a circular trajectory by
definition. In polar coordinates, the tangent to the circle is given by the unit vector
êφ, in terms of which the vector velocity of body in general circular motion reads

v(t) = v(t) êφ = Rω(t) êφ. (2.40)

Linear acceleration in uniform circular motion

All circular motion, even uniform, is accelerated motion, because the direction of
the velocity vector constantly changes as a body travels around the circle. Here we
consider only uniform circular motion, while the general case of arbitrary circular
motion is derived in Appendix A.1.

Consider a body in uniform circular motion, and imagine measuring the body’s
velocity v at two closely-spaced points in time. Let ∆v = v2 − v1 denote the vector
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difference of velocities and let ∆φ denote the angular displacement between the two
velocity vectors. Under the assumption of uniform circular motion, the magnitude of
both velocities is equal: |v2| = |v1| ≡ |v|. From geometric considerations and the
Pythagorean theorem, the two velocity vectors are related according to

sin
∆φ

2
=

1

2

|∆v|
|v|

=⇒ |∆v| = 2|v| sin ∆φ

2
. (2.41)

We then substitute (2.41) into the general definition of acceleration to get

|a(t)| = lim
∆t→0

∣∣∣∣∆v

∆t

∣∣∣∣ = lim
∆t→0

∣∣∣∣2|v|sin(∆φ/2)

∆t

∣∣∣∣ (2.42)

(a)
= 2v lim

∆t→0

sin(∆φ/2)

∆t
, (2.43)

where in (a) v = v is constant under the assumption of uniform circular motion. In
the limit as ∆t → 0, we correspondingly have ∆φ → 0, and using the Taylor series
approximation sinx → x as x → 0, (2.43) simplifies to

|a|ucm = 2v lim
∆t,∆φ→0

sin(∆φ/2)

∆t

(a)
= 2v lim

∆t→0

(
∆φ/2

∆t

)
= v lim

∆t→0

∆φ

∆t

= v
dφ

dt

(b)
= vω,

where (a) uses sinx → x as x → 0 and (b) uses ω = dφ/dt. Using v = Rω from
(2.39), the result |a| = vω for uniform circular motion can be rewritten

aucm = vω = ω2R =
v2

R
, (2.44)

where R is the circle’s radius.

Vector formulation of planar circular motion

For rotation in a plane, angular displacement, velocity, and acceleration can be
thought of as vector quantities along the axis of rotation, with a sign determined by
the right-hand rule convention. (For example, for counterclockwise circular motion
in the xy plane, angular displacement, velocity, and acceleration would point along
the positive z axis.) A vector formulation of arbitrary three-dimensional rotation
is more complicated.21 We will return to this problem briefly in the lectures on
rotational mechanics and relegate a more thorough treatment to the second-year
courses Klasična mehanika and Matematična fikzika 1.

Our goal for now is just to develop some experience in simple vector algebra
using the special case of planar circular motion. Consider a body in planar circular

21Summarizing considerably, finite rotations ∆φ do not satisfy the commutativity under addition
required for elements of a vector space and thus cannot be described as vectors—you can confirm this
yourself with the textbook rotation experiment usually prescribed in this context. However—and
this can be surprising to the uninitiated—infinitesimal rotations dφ, and thus the angular velocity
ω and acceleration α ultimately derived from them, are valid vector quantities in three dimensional
space.
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motion of radius R. Using the center of rotation as the origin, the body’s x and y
Cartesian coordinates are

x = R cosφ and y = R sinφ, (2.45)

where φ denotes the angle between the body’s instantaneous position r the x axis.
The body’s position vector then reads

r = R(cosφ, sinφ). (2.46)

Next, we express angular position φ in terms of angular velocity ω using φ = ωt
(compare to x = vt for linear motion) and substitute this into (2.46) to get

r = R(cosωt, sinωt). (2.47)

We now find the body’s velocity with component-wise differentiation of r:

v =
dr

dt

(a)
=

d

dt

[
R(cosωt, sinωt)

]
(2.48)

= R

(
d

dt
cosωt,

d

dt
sinωt

)
(2.49)

(b)
= ωR(− sinωt, cosωt), (2.50)

where in (a) we have substituted in (2.47) and in (b) ω is treated as constant under
the assumption of uniform circular motion. Equations (2.46) and (2.50) confirm that
position and velocity are perpendicular in circular motion, i.e. v ⊥ r or v · r = 0.
We can check this explicitly with the calculation

v · r = ωR2
[
− cos(ωt) sin(ωt) + cos(ωt) sin(ωt)

]
= 0 =⇒ v ⊥ r. (2.51)

To find the acceleration aucm of a body in uniform circular motion, we differentiate
(2.50) to get

aucm =
dv

dt
= ωR

d

dt

[
(− sinωt), cosωt

]
(2.52)

= −ω2R(cosωt, sinωt) (2.53)

(a)
= −ω2r, (2.54)

(b)
= −ω2R êr, (2.55)

where in (a) we have recognized and substituted in r from (2.47) and in (b) we have
written r in terms of the radial unit vector êr as r = R êr. The results a ∥ −r from
(2.54) and v ⊥ r from (2.51) tell us that acceleration in uniform circular motion
points radially inward and is perpendicular to v; the decomposition of acceleration
for uniform circular motion is thus

a
(a)
= ac + at = −ω2r; a = ac = −ω2r, at = 0, (2.56)

where (a) is the general decomposition, from (2.25), of acceleration into components
parallel and perpendicular to a body’s instantaneous velocity v. The only difference
compared to (2.25) is a change in notation: we use ac for a⊥ and at for a∥. The
subscripts stand for “centripetal” and “tangential”, respectively, and are more
common in the context of circular motion.
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2.2.6 Kinematics of one-dimensional free fall

In this section we analyze the kinematics of a point mass in free fall in a uniform
gravitational field. Physically, imagine a point-like body launched straight upward
or straight downward with initial speed v0, then left to fall under the influence of
gravity. We will find that the object’s height, say z(t), changes quadratically with
time according to

z(t) = z0 + v0t−
g

2
t2, (2.57)

where z0 and v0 are the initial height and velocity, and g is the magnitude of the
gravitational acceleration. For simplicity, we begin with a one-dimensional analysis
and neglect air resistance, and return to two-dimensional free fall in the next section.

Note: Choosing a coordinate system

Recall from Section 2.2.5 on uniform circular motion that choosing a coordinate
system that leverages a physical problem’s symmetries or preferential directions can
considerably simplify analysis. The problem of a free-falling body has a clear prefer-
ential direction—the direction of the gravitational acceleration, which we represent
with the vector quantity g. We will solve this problem in a Cartesian coordinate
system whose z axis points opposite the direction of g and thus perpendicularly
upward from the Earth’s surface. In everyday language, this just means the z axis
points in the direction we think of as “up”, while g points “down”. Since we consider
only one-dimensional motion along the axis of free fall, there is no need to bother
defining either the x or y axes.22

Solving for the falling body’s velocity

A free-falling object, in the absence of air resistance, accelerates with the acceleration
of the ambient gravitational field, which we have called g. The current problem
has a uniform gravitational field, which means that g is constant—this considerably
simplifies analysis. Let g ≡ |g| denote the magnitude of the gravitation acceleration;
for orientation, the value of g on the Earth’s surface is approximately g ≈ 9.8m s−2.

In this problem’s Cartesian coordinate system, g can be written in either vector
or component form as

g = −g êz or g = (0, 0,−g), (2.58)

where êz is the unit vector in the direction of the z axis. The minus sign in
corresponds to the fact that g points opposite êz or, in everyday language, the fact
that g points “down” while êz points “up”. Since a free-falling body accelerates with
the acceleration of the ambient gravitational field, the body’s acceleration a is just

a = g or, in component form, (ax, ay, az) = (0, 0− g). (2.59)

The equation’s z component, which corresponds to vertical motion, is

az = −g. (2.60)

22More precisely, one might say that the problem of one-dimensional free fall is invariant under
rotation about the axis of free fall. This means that as long as the z axis points upward, our analysis
will be the same, and produce the same result, regardless of how we rotate the x and y axes with
respect to the z axis.
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In fact, the simple equation az = −g encodes everything there is to know about
a free-falling particle in one dimension. Our goal is to solve (2.60) for the falling
body’s position and velocity as a function of time. Like in (2.12) in the discussion of
velocity and differential equations, we first turn az = −g into a differential equation:

az
(a)
=

dvz
dt

= −g =⇒ dvz = −g dt, (2.61)

where in (a) we have used the definition of acceleration az = dvz/ dt from (2.23). For
shorthand, let v ≡ vz and a ≡ az, since there is only one dimension involved and the
subscripts would only clutter the problem. Dropping the subscripts, (2.61) reads

dv = −g dt. (2.62)

Along the same lines as (2.14b) in the section on velocity and differential equations,
we first let v0 ≡ v(t0) denote the free-falling body’s vertical velocity at some initial
time t0, then integrate (2.62) from t0 to an arbitrary time t to get

ˆ v(t)

v0

dν = v(t)− v0 =

ˆ t

t0

(−g) dτ = −g

ˆ t

t0

dτ = −g(t− t0). (2.63)

After clearing things up and rearranging we have

v(t)− v0 = −g(t− t0) =⇒ v(t) = v0 − g(t− t0). (2.64)

Equation (2.64) is the general result for the velocity of a free-falling object in one
dimension as a function of time. If we choose to begin counting time at t0, so that in
this problem t0 = 0, we recover the familiar kinematics formula

v(t) = v0 − gt. (2.65)

Solving for the falling body’s position

Next, we will solve (2.65)23 for the free-falling particle’s position z(t). As in (2.61),
we first write (2.65) as a differential equation using the definition of velocity to get

v(t) =
dz

dt
= v0 − gt. (2.66)

We then rearrange, let z0 ≡ z(0), and integrate (recalling the choice t0 ≡ 0) to get

ˆ z(t)

z0

dζ =

ˆ t

0
v0 dτ −

ˆ t

0
gτ dτ. (2.67)

(We have used the Greek letters zeta and tau for integration variables, as discussed
in the context of (2.14b).) Solving the integral produces

z(t)− z0 = v0t−
g

2
t2 =⇒ z(t) = z0 + v0t−

g

2
t2. (2.68)

Equation (2.68) gives the position of a free-falling particle in one dimension as a
function of time, assuming time is counted so that the particle began falling at t0 = 0.

23One could also solve the more general (2.64), which leaves t0 arbitrary, but for our present
purposes dragging along the extra t0 just muddles the message without introducing any new physics.
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At what time is the body at a given height?

We now ask the following question: if a body is launched upward at time t0 = 0
from an initial height z0, how much time does it take to reach an arbitrary height z?
To answer the question, we first rearrange (2.68) into a standard-form quadratic
equation in time, i.e.

g

2
t2 − v0t+ z − z0 = 0. (2.69)

Our idea is to solve for t as a function of z. To do this, we apply the quadratic
formula with a = g/2, b = −v0 and c = (z − z0) to get

t =
v0 ±

√
v20 − 2g(z − z0)

g
. (2.70)

By the fundamental theorem of algebra, (2.70) is guaranteed to have two (in general
complex) solutions. But before diving right into mathematics, it’s more instructive
to think about the problem physically. Forgetting equations for a moment, imagine
an object launched vertically upward at t0 = 0 with initial velocity v0 from initial
height z0. Everyday intuition holds good here: the object will initially rise, reach
a maximum height zmax > z0 at which it stops rising, and then begin falling back
down. We can immediately recognize the following: the object...

(a) ...won’t ever reach heights above zmax, so (2.70) shouldn’t have real-valued
solutions for z > zmax.

(b) ...reaches heights in the range z0 to zmax twice—once coming up and once
coming down. We thus expect two solutions to (2.70) for z ∈ (z0, zmax), both
at times after the object was launched.

(c) ...reaches its initial height z0 twice—once exactly at launch time (at t = 0) and
once at a later time when falling back down.

(d) ...reaches heights less than the initial height z0 after passing z0 on the way
down, i.e. for times larger than 2v0/g.

After examining the problem physically, we can follow up with a mathematical
analysis of each point predicted in the heuristic analysis above

(a) Equation (2.70) has no real solutions when the discriminant is zero, which
occurs for height z larger than

v20 − 2g(z − z0) < 0 =⇒ z >
v20
2g

+ z0. (2.71)

The maximum height mentioned in point (a) above is thus

zmax =
v20
2g

+ z0. (2.72)

Jumping ahead somewhat, in the future lectures on energy we will find that
the object cannot pass zmax if its initial kinetic energy is too small to overcome
the gravitational potential energy at zmax.

34



Sa
m
pl
e

2.2. Kinematics

(b) It is a straightforward exercise in grade school algebra to show that (2.70)
has two positive solutions only for z in the range (z0, zmax). In this problem
positive times are those after the object was launched, so this mathematical
result agrees with the physical intuition of point (b) above.

(c) Similarly, (2.70) has two solutions for z = z0, once at t = 0 (launch time) and
once at t = 2v0/g, in agreement with point (c) above.

(d) Careful here—(2.70) has two solutions for any z < z0, one negative and one
positive. Suppose you solve (2.70) for a height z− < z0 get the two solutions
t− and t+. Physically, the positive time corresponds to the falling-down phase
predicted in point (d) above.

What the negative solution tells you is this: if the object had been traveling
along the trajectory determined by its initial height and velocity for all times,
and had passed through the launch point with velocity v0 at time t0 = 0, it
would have passed through the height z− (on the way up) t− seconds before
passing reaching the launch point z0.

It is tempting to throw this answer out with an argument like “negative times
are non-physical”, but that’s not quite correct. Complex-valued times are
non-physical—this is why the object never reaches heights above zmax. But
negative times can be perfectly physical—which times are negative and which
are positive only depends on the arbitrary decision of when you begin to start
counting time, just like which heights are negative and which are positive
depends on where you define a coordinate system’s origin.

Solving for final velocity

Finally, we answer the following question: if a body is launched upward at time
t0 = 0 from an initial height z0, what is its velocity at an arbitrary height z? We
begin with (2.65), v(t) = v0 − gt, (the body’s velocity as a function of time), and
substitute in time as a function of height from (2.70). The result is

v = v0 − gt (2.73)

(a)
= v0 − g

(
v0 ±

√
v20 − 2g(z − z0)

g

)
(2.74)

= ±
√
v20 − 2g(z − z0), (2.75)

where (a) uses (2.70). Like in the discussion in point (d) above, the two solutions
correspond to a free-falling body reaching a given height twice—once going up and
once going down. Note also that (2.75) has no real solutions for z > zmax, which must
be the case for consistency with point (a) above. It is also instructive to check that
v = 0 at z = zmax, which corresponds to a free-falling object stopping momentarily
at its peak height zmax before falling back down again.

Additionally, to conceal questions of plus or minus, one can square (2.75), which
produces the well-known kinematics formula

v2 = v20 − 2g(z − z0). (2.76)
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A good lesson from (2.76) is that magnitude of final velocity v increases with an
increasing distance ∆z = z − z0. Interpreted physically, this just means that the
farther an object falls, the faster it gets.

In passing, is also possible, and instructive, to derive (2.76) using the chain rule
from differential calculus. We begin with the definition of acceleration a = dv/dt
and apply the chain rule to get

a =
dv

dt
=

dv

dz

dz

dt
= v

dv

dz
=⇒ v dv = a dz. (2.77)

We then integrate (2.77), producing

ˆ v

v0

ν dν =

ˆ z

z0

a dζ =⇒ 1

2
(v2 − v20) = a(z − z0), (2.78)

which we rearrange to get
v2 = v20 + 2a(z − z0). (2.79)

Substituting in a = −g for free fall recovers (2.76).

2.2.7 Projectile motion

In this section, we generalize the discussion of free fall from Section 2.2.6 to two-
dimensional projectile motion, in which a launched or dropped body (called a projectile
in this context) is allowed to move in both the horizontal and vertical directions. In
everyday language, we are interested in what happens to objects launched diagonally
upward, for example a tossed ball or an arrow shot from a bow. We neglect air
resistance in the analysis, but we will qualitatively comment on the complications
that arise when considering it at the end of the section.

Analysis and coordinate system

In principle, real-life projectile motion takes place in three dimensions simply because
space is three-dimensional. But if you line yourself up with a projectile and observe
its trajectory, you will notice that (in the absence of outside influences like wind)
the projectile will only move forward/back and up/down, but not also side-to-side.
The projectile’s motion is restricted to a plane. By choosing a Cartesian coordinate
system in which, say, the xz plane is aligned with the plane of motion, one can
analyze projectile motion completely generally in only two dimensions instead of
three. This is what we will do in this problem, and is yet another example of how a
well-chosen coordinate system can simplify mathematical analysis.

Consider a projectile at initial position r0 launched with initial velocity v0 at
an angle ϕ with the horizontal, and let g denote the gravitational acceleration. We
will use a Cartesian coordinate system with the z axis point opposite g (as for
one-dimensional free fall) and the x axis in the direction of the projectile’s horizontal
motion. A free-falling body has the same acceleration a as the ambient gravitational
acceleration, so a = g, just like for one-dimensional free fall. In this coordinate
system, the relevant vector quantities have the component representations

r0 = (x0, 0, z0), v0 = (vx0 , 0, vz0), a = g = (0, 0,−g). (2.80)
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Letting v0 ≡ |v0| denote the magnitude of the projectile’s initial velocity, we can
relate v0 to the launch angle ϕ according to

vx0 = v0 cosϕ and vy0 = v0 sinϕ. (2.81)

Equations (2.80) and (2.81) completely specify the projectile’s motion—we just
have to solve them. One solves multi-dimensional problems of this type by writing
equations for each dimension separately. In this problem only the x and z components
are relevant—because of our choice of coordinate system, y(t), vy(t) and ay(t) are
all conveniently zero and we will not consider them further. We first write out the
projectile’s horizontal and vertical acceleration:

ax = 0 and az = −g. (2.82)

We then solve the horizontal and vertical components separately.

Horizontal component of motion

With experience, one would immediately recognize that

ax = 0 =⇒ vx(t) = vx0 , (2.83)

i.e. that in the absence of a horizontal acceleration, a projectile will continue moving
with its initial horizontal velocity vx0 for all time.24 But since this is our first time
and some students might not have experience with integral calculus, we also show
how to reach the result vx(t) = vx0 formally. We begin with ax = 0, which write as
differential equation in the form

ax =
dvx
dt

=⇒
ˆ t

0
ax(τ) dτ =

ˆ vx(t)

vx0

νx dνx. (2.84)

We then apply ax = 0 and evaluate the integrals to get

0 = vx(t)− vx0 =⇒ vx(t) = vx0 , (2.85)

in agreement with (2.83). To solve for the projectile’s horizontal position, we integrate
(2.85) over time to get

x(t) = x0 + vx0t. (2.86)

Vertical component of motion

This problem has a very nice property: the horizontal and vertical components of
motion are independent, i.e. y quantities do not feature in the x equations, and vice
versa. This means that analyzing the vertical component of 2D projectile motion
is just as easy as analyzing purely vertical free fall, which we have already done in
Section 2.2.6. After beginning with az = −g and following an analogous analysis to
that in Section 2.2.6, which we won’t re-write here, the results are

vz(t) = vz0 − gt, (2.87)

z(t) = z0 + vz0t−
g

2
t2. (2.88)

24Of course, because of air resistance, physical projectiles do not continue with their initial
horizontal velocity ad infinitum—we return to this problem at the end of the section.
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The only difference compared to (2.65) and (2.68) is the initial velocity v0 in 1D
motion generalizing to the vertical component vz0 in 2D motion.

Relating horizontal and vertical motion

We now answer the following question: What is a projectile’s height z at a given
horizontal position x? The relevant equations are (2.86) and (2.88); for review these
read

x− x0 = vx0t, (2.89a)

z − z0 = vz0t−
g

2
t2. (2.89b)

To simplify notation, we first re-write (2.89) in terms of the new variables ∆x ≡ x−x0
and ∆z ≡ z − z0, producing

∆x = vx0t, (2.90a)

∆z = vz0t−
g

2
t2. (2.90b)

We then solve (2.90a) for time, t = ∆x/vx0 , and substitute the result into ∆z to get

∆z =
vz0
vx0

∆x− g

2

(
∆x

vx0

)2

. (2.91)

Finally, we use vx0 = v0 cosϕ and vz0 = v0 sinϕ from (2.81) to get the final expression

∆z = ∆x tanϕ− g

2

(∆x)2

v20 cos
2 ϕ

. (2.92)

The result is a parabola, meaning that a projectile’s height z, in the absence of air
resistance, varies parabolically with its horizontal position x. (Note that z also varies
parabolically with t, but that is a separate concept.)

Flight time and range

We conclude by considering the following two questions:

(a) How much time t does a projectile take to reach a given height z? This is
called the projectile’s flight time.

(b) How far has the projectile traveled horizontally after reaching a given height z?
This horizontal distance is called the projectile’s range.

One finds flight time by solving (2.88) for t as a function of z using the quadratic
formula. The results and discussion are analogous to the case of one-dimensional
motion in (2.70), with v0 from (2.70) replaced by the vertical component vz0 . The
result is

t =
v0 ±

√
v2z0 − 2g(z − z0)

g
. (2.93)

In particular, a projectile falls back to the height it was launched from (found by
setting z = z0 in (2.93)) after a time

t0 =
2vz0
g

(a)
=

2v0
g

sinϕ, (2.94)
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where in (a) we have used vz0 = v0 sinϕ. This time is also twice the time to the
highest point—try confirming this yourself by maximizing (2.88) with respect to
time. To find the body’s range, i.e. the horizontal distance ∆x it has traveled after
reaching a height z, one should

(i) solve for the time(s) t required to reach z using (2.93), then

(ii) substitute these times into (2.86) to find the range ∆x.

The two times—and the resulting ranges ∆x—correspond to a projectile reach a
given height once on the way up and once on the way down (see also the discussion
in point (d) from page 35). In particular, the body’s range ∆x when falling back to
its initial height, using the time t0 from (2.94), is

∆x = x− x0 = vx0t0
(a)
= vx0 ·

2vz0
g

(2.95)

(b)
= 2

v20
g

sinϕ cosϕ (2.96)

(c)
=

v20
g

sin 2ϕ (2.97)

where in (a) we have substituted in (2.94), in (b) we have used vx0 = v0 cosϕ and
vz0 = v0 sinϕ and in (c) we have used the trigonometric identity 2 sinϕ cosϕ = sin 2ϕ.

Comment: Look for simple answers first

Equation (2.97) holds the answer to an interesting question—at what launch angle
ϕ is a projectile’s range maximized? There are two ways to go about this: one
could blindly charge in with the full force of the differential calculus machinery and
maximize the function ∆x(ϕ) by testing the zeros of the derivative d(∆x)/ dϕ. The
mathematical result would be

ϕ =
π

4
+ πk, k ∈ Z. (2.98)

You would then have to apply physical reasoning to conclude that ϕ = π/4, i.e. 45◦

degrees relative to the vertical, is the physically sensible solution.
Alternatively, one could recall that the sine function is maximized when its

argument equals π/2 (and that v20/g is a constant and won’t affect the result). You
then solve the equation

2ϕ =
π

2
=⇒ ϕ =

π

4
. (2.99)

Same result, much simpler procedure. There are two lessons here:

(i) (Neglecting air resistance), a projectile will travel the furthest horizontal dis-
tance at a given launch speed if it is launched at π/4 = 45◦ relative to the
horizontal.

(ii) More importantly, before applying the full force of the available mathematical
machinery to solve a physical problem, check for straightforward routes to the
same solution—this can be particularly relevant when maximizing, integrating,
or averaging sinusoids in a physical context.
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Comments on air resistance

Air resistance, also called drag, greatly complicates projectile motion. Although
somewhat ahead of our discussion of dynamics, drag forces act in the opposite
direction of velocity v and increase with increasing magnitude v = |v|. Interpreted
physically, this just means that drag forces have the effect of slowing a body down,
and are stronger the faster a body is moving. At large Reynolds numbers (loosely,
at high speeds), drag is proportional to squared speed, and a general form of a
drag-induced acceleration might be

ad = −Cdv
2 v

|v|
(a)
≡ −Cdv

2 · 1
v
(vx, vy) = −Cdv · (vx, vy) (2.100)

where in (a) we have written v in component form and used the shorthand v = |v|.
The term Cd is a constant drag coefficient that encodes the geometry of the projectile
and properties of the surrounding air flow; its exact value is irrelevant in this

discussion, and we include it only for completeness. Using v =
√
v2x + v2y , the x and

y components of the drag acceleration ad are

adx = −Cd

√
v2x + v2y · vx,

ady = −Cd

√
v2x + v2y · vy.

Here is the problem: both the x and y components of acceleration now include both
the x and y components of velocity. Unlike in (2.82), the components of motion in the
horizontal and vertical dimensions are now dependent, or coupled. Concretely, means
that a changing velocity in one dimension affects the acceleration (and thus velocity)
in the other dimension, and vice versa. This interdependence considerably complicates
analysis, so much so that problems involving drag in real-world applications are
usually solved numerically. Numerical solutions to coupled systems of differential
equations are introduced in the first year elective course Računalnǐska orodja v fiziki,
and covered in more detail in the later courses Numerične metode and Matematično-
fizikalni praktikum. Note that the goal here is just to offer a qualitative idea of
how air resistance complicates real-life projectile motion—you won’t be expected to
actually compute such motion in the scope of this course.

2.2.8 Kinematics of relative motion and inertial frames

In this section we consider the problem of two different observers watching the same
physical process from two different positions in space. This could be as simple as
two students (the two observers) sitting on either side of a lecture hall watching the
professor perform an experiment (the observed physical process). The question we
will answer is:

How does one convert between two different descriptions of the same
physical process given the relative separation (and velocity) of the two
observers?

Frame of reference

What, precisely, do we mean by an “observer”? To describe a physical process, an
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observer must specify the position and time of everything occurring in the scope
of the process. Specifying position requires a coordinate system and origin, while
specifying time requires a consistent means of keeping time, which we will abstractly
call a clock. The combination of a coordinate system, origin, and a clock is called a
frame of reference. What we really mean by an observer, then, is a frame of reference.
In precise language, what we’re after in this section is a formalism for converting
between descriptions of the same physical process observed from different frames of
reference.

Consider two observers, whom we will call A and B, watching the same physical
process. Suppose each observer uses a coordinate system with the origin centered at
the observer’s current position, and, to be general, suppose their clocks are offset
by some arbitrary interval t0. Let S and S′ denote A and B’s frame of reference,
respectively. Because the origins and clocks are different, the values of the times
and coordinates used by A and B will be different. How, on the basis of A’s
measurements, can A predict the values of the times and coordinates that will appear
in B’s measurements? In more precise language, what is the transformation of space
and time from the frame of reference S to the frame of reference S′?

Transformation for time

In the scope of classical physics, time passes at the same rate in all frames of
reference.25 Different clocks might have constant relative offsets, but all run at the
same rate. This makes clock synchronization in classical physics very easy—one
simply subtracts the time offset: if t is the time in S, t′ is the time in S′, and the
clock in S is ahead of the clock in S′ by a time t0, then

t′ = t− t0. (2.101)

This is no more difficult than someone calculating the current time in New York
by subtracting six hours from the current time in Paris. But in nearly all practical
cases in classical physics, two frames of reference will use the same clock, i.e. t = t′

with t0 = 0, and you won’t have to worry about synchronizing clocks at all. We
have mentioned the general case involving an offset only for the sake of completeness.
Meanwhile, synchronizing position (and its time derivatives, velocity and acceleration)
is a little more involved, and we discuss this next.

Transformation for position

To make any progress, we must first specify the location of the S and S′ origins
relative to each other: let the vector r0 point from the origin of S to the origin of
S′, and, analogously, let r′0 point from the origin of S′ to the origin of S. In this
case, as is most easily seen from a figure, positions measured in S and S are related
according to

r = r0 + r′ =⇒ r′ = r − r0. (2.102)

The result r′ = r − r0 is called the Galilean transformation of position from the
frame S to S′—it uses the positions r and r0 measured in S to express the position r′

measured in S′. The reverse Galilean transformation from S′ to S, which is again
best seen from a figure, is

r = r′ − r′0. (2.103)

25In the theories of special (and general) relativity, time passes at different rates in different frames
of reference, but that is a topic for Moderna fikzika 1.
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In this case, quantities measured in S′ are used to express quantities in S.
Importantly, one can convert between between (2.102) and (2.103) simply by

switching the primed and unprimed quantities. There is a subtle but powerful idea at
work here—loosely, the fact that you can interchange primed and unprimed quantities
and get the same equations means that observations in the two systems are equivalent.
Which system we call S and which one we call S′ is an arbitrary human construction,
and a physical process will behave the same way and lead to the same results when
described in either frame of reference. The principle that the equations describing
any physical process take the same form regardless of the frame of reference in which
the process is observed is called the principle of relativity.

Transformations of velocity

We now aim to find a relationship between observed velocities in S and S′. This is
straightforward—we first differentiate (2.102) with respect to time and get

v′ =
dr′

dt
=

dr

dt
− dr0

dt

(a)
≡ v − v0, (2.104)

where in (a) we have used v0 = dr0/dt to denote the velocity of the S′ origin relative
to the S origin. Equation (2.104) is called the Galilean transformation of velocity
from the frame S to S′. To find the inverse transformation from S′ to S, one simply
interchanges the primed quantities in (2.104) to get

v = v′ − v′
0, (2.105)

where v′
0 = dr0/dt. Note that one could reach the same result by differentiating

(2.103) directly—this must be the case by the principle of relativity.

Relative acceleration and inertial systems

The natural question to ask next is how accelerations transform between frames of
reference. Again the answer straightforward, one differentiates (2.104) with respect
to time and gets

a′ = a− a0, (2.106)

where a0 = dv0/ dt is the acceleration of the S′ origin relative to the S origin. In
principle, we could keep playing this game ad infinitum, taking higher and higher
derivatives of (2.106) and getting more and more transformation laws. But for
reasons that will be more clear in the coming lectures on dynamics, it is conventional,
and in fact physically sensible, to stop this process at the level of acceleration.26 We
then distinguish between two types of reference frames:

(a) frames with zero relative acceleration, i.e. a0 = 0, and

(b) frames with non-zero relative acceleration, i.e. a0 ̸= 0.

Any set of frames with zero relative acceleration, a0 = 0, is called a family of inertial
frames. Inversely, any set of reference frames with non-zero relative acceleration,
a0 ̸= 0, is called a family of non-inertial reference frames. Because their origins move
relative to each other with varying velocity, non-inertial reference frames exhibit

26Skipping ahead somewhat, acceleration is a natural stopping point because Newton’s second law
relates force to acceleration (and not, say, velocity, jerk, or some other derivative of position).
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some counter-intuitive properties that we will return to in the lectures on system
forces. For now, we focus only on inertial reference frames—these are the frames in
which Newton’s laws of motion hold, and they are most relevant for describing the
physics of everyday life.

Absolute frames of reference

Caution: so far we have not defined the requirements for an absolute inertial frame—
doing requires concepts from dynamics. In the scope of kinematics, one can only
say if two or more frames are mutually inertial, but not if an individual frame is
absolutely inertial. The problem is that an inertial reference is defined as having
zero absolute acceleration. Trying to specify absolute acceleration in the scope of
kinematics requires another, external non-accelerated reference frame with respect to
which one measures the first frame’s acceleration, and you are back at the problem
you started with!

In the scope of kinematics, you cannot specify if a frame of reference is absolutely
inertial. You can measure the acceleration of some frame S′ relative to some other
frame S, but if you measure zero relative acceleration a0 = 0, you cannot tell if both
systems are non-accelerated or if both are accelerating with the same acceleration.
We will resolve this problem using Newton’s laws of motion; loosely, we will define
inertial frames as those frames in which the observed motion of bodies agrees with
the motion theoretically predicted by Newton’s laws.

Inertial frames in practice

Inertial reference frames, like physical models, are an idealization. Within the
scope of modern experiments, everything, even at cosmological scales, seems to be
rotating (and thus accelerating) relative to something else. Yes, the Earth’s surface
is reasonably inertial, the center of the solar system is a better approximation of
an inertial frame than the Earth, the center of our galaxy is better than the solar
system, and so on, but as far as we can measure, everything seems to be at least
somewhat accelerating relative to something else.

And that is perfectly fine! In practice, the relevant question is not “is this frame
perfectly inertial?” but instead “within the limits of experimental error, does the
physical behavior observed in my (technically non-inertial) experiment agree the
behavior I would theoretically expect in an inertial frame of reference?” Very often,
the answer is yes, and in this case it is perfectly acceptable, and indeed advisable, to
perform analysis in an inertial frame of reference, simply because it is easier.

For the purposes of this course, we will generally use the Earth’s surface as an
inertial frame of reference. Of course the Earth’s surface is not perfectly inertial—this
can be seen from the behavior of cyclones, ocean currents, the motion of Focault’s
pendulum, and so on. We will explore these topics in the lectures on system forces,
and you will study non-inertial reference frames in more detail in the second-year
course Klasična mehanika.

2.3 Dynamics

In this section we have two goals:

1. to answer what causes motion, and

2. once we know the cause of motion, to develop a formalism for predicting motion.
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2.3.1 Forces and the environment

The concept of the environment

So far, in the scope of kinematics, we have specified and analyzed only a single body.
In dynamics, a single body is not enough. To speak of the dynamics of an observed
body, you must bring other bodies into the picture—these other bodies are what
ultimately cause the observed body to move. There are thus two actors at play in
dynamics:

1. an observed body, whose motion we wish to predict, and

2. all other bodies in the observed body’s surroundings that can cause the observed
body to move. These other bodies are collectively called the observed body’s
surroundings or environment.

In principle, a body’s dynamical environment is everything else in the universe. In
practice things are much simpler—in any given situation there are usually only a few
relevant bodies in the environment, and these become easy to identify with practice.
The goal of dynamics is to quantify the effects of this environment on the motion of
an observed body or physical system.

Forces

The motion-causing interactions between an observed body and the surrounding
bodies in its environment are called forces. We immediately emphasize an important
point: a force can arise only from the interaction between two concrete, physical
bodies—bodies you point to, look at, or touch. There are two lessons here:

• Forces do not amorphously arise from mystical sources—they are the conse-
quence of physical objects you can see, touch, or otherwise identify. Forces can
act through contact or from a distance, but even long-range forces always in-
volve an interaction between two well-defined bodies. Your weight, for example,
arises from the interaction between your body and the Earth.

• The second point is more subtle: the correct way to think about forces is
as a mutual interaction between two bodies. It does not make sense to talk
about the force on a body without specifying the other body involved in the
interaction. Even the popular formulation of one body “causing” a force and
a second body “receiving” is misleading—there is no fundamental concept
of “source” or “recipient” built into the Newtonian formalism, only a mutual
interaction between two bodies. (We will formalize this idea in the context of
Newton’s third law.)

Of course, in practice, when we focus an analysis on an observed body it is common
to speak only of the “force applied to the body” or the “force on the body”, but even
here it should be implicitly understood that the force of the environment on the body
is an interaction intrinsically related to the force of the body on its environment.

Units of force

The SI unit of force is the newton. One newton is defined as the amount of force
needed to accelerate a one-kilogram mass at one meter per second squared (in an
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inertial frame of reference). For orientation, one newton is roughly equal to the
weight of a small apple on the Earth’s surface.

Mass and inertia

Two relevant concepts in the context of dynamics are a body’s inertia and mass. A
body’s mass is a fundamental physical quantity, introduced in Section 1.3.2, that
measures the amount of matter making up the body. A body’s inertia is a dynamical
property that encodes the body’s resistance to acceleration under the influence of
an external force. In other words, a body with more inertia will accelerate less in
response to a given force than a body with less inertia.

It turns out that, for the purposes of Newtonian dynamics, a body’s inertia and
mass are completely equivalent—in fact, the mass m in Newton’s second law was
originally called “inertia” in Newton’s time. If you write Newton’s second law (which
we will formally define shortly) in the form

a =
F

m
, (2.107)

it is mathematically clear that a body’s acceleration in response to a given force
is inversely proportional to its mass, i.e. mass causes a body to resist acceleration.
This should also be intuitively reasonable—the more “stuff” making up a body, the
harder it is to accelerate it.

To some extent, the one-to-one correspondence between inertia and mass makes
inertia seem redundant—by specifying a body’s mass, you have also fully specified
its inertia. It might be helpful to think of inertia as being a dynamical property of
mass. Mass tells you how much of a body there is, which in turn determines the
body’s resistance to acceleration under the influence of forces.

The vector nature of forces

Forces behave as vector quantities. In practice, this is relevant for the following
reason: a body under the influence of multiple forces acts as if it were under the
influence of a single force equal to the vector sum of the original forces, which in this
context is called the net force. This property is called the principle of superposition,
and it forms the backbone of Newtonian dynamics (and other branches of physics,
too).

Comment: Distinguishing mass and weight

We now briefly comment on the difference between mass and weight, since the two are
sometimes confused in everyday language. Mass is an intrinsic property measuring
the amount of material making up a body. Weight, meanwhile, is a force—it measures
the gravitational interaction between a body and its surroundings. The key difference
is this: because weight is a force, a body’s weight depends on both the body itself
and on its surroundings, while a body’s mass depends only on the body itself. In this
light, it should be clear why bodies are weightless in outer space—there is nothing
else in outer space to cause weight.

Confusion can arise from the combination of two factors:

(i) Weight happens to be proportional to mass—the formula for a body’s weight is

Fweight = mg, (2.108)

where m is the body’s mass and g is the surrounding gravitational acceleration.
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(ii) In everyday life, the Earth’s gravitational influence (i.e. the “surroundings” in
the language of dynamics, or the g in (2.108)) is essentially constant. Because
the surroundings are constant, everyday life does not instill an intuitive un-
derstanding that weight also depends on the environment. Although a body’s
weight indeed depends on two things—its mass and its surroundings—only
mass varies appreciably in everyday life, so it is understandable, albeit incorrect,
that people use mass and weight interchangeably in the scope of everyday life.

(Finally, for the mathematically-inclined, mass is a scalar while weight is a vector,
which makes the distinction, at least mathematically, quite obvious.)

2.3.2 Inertial frames and Newton’s laws

Absolute inertial frames

In Section 2.2.8, we put off defining an absolute inertial frame until we began
dynamics; it might be a good idea to review the section on absolute frames of
reference now. What we were missing in kinematics was the concept of forces, i.e.
motion-causing interactions between an observed body and its environment. Having
introduced forces, we now define inertial frames:

An inertial frame of reference is a frame in which a particle with zero
net force acting on it travels at constant velocity.

The recipe for determining if a frame of reference is absolutely inertial is thus:

1. In the frame you wish to test, choose a test particle and ensure that the net
force on the particle is zero.

2. Observe the particle’s motion. If the particle moves with constant velocity
(relative to the tested reference frame), then the frame is inertial.

Note that this experiment is well-defined only under the assumption that an observer
can identify with certainty if the net force on the particle is or is not zero. In practice
doing so is usually straightforward, although we will have a few more words to say
about the theoretical validity of this assumption towards the end of this section.

Newton’s first law

Newton’s first law, in its most commonly quoted form, states:

A body with zero net force acting on it moves at constant velocity.

There is also an alternate, perhaps more instructive formulation of Newton’s first
law that we will return to shortly, but we stick to the above interpretation for now.
The first law implies that a body moving at constant velocity will continue to move
at the same velocity forever, as long as the net force on the body is zero. In other
words, the natural state of bodies left to themselves is constant-velocity motion (and
not rest, as in the Aristotelian view).

This immediately raises the question of why moving bodies in everyday life
generally come to rest when left to themselves, which seems to contradict the first
law. The answer is simple—everyday moving objects are not left to themselves!
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They are subject to friction, air (fluid) resistance, and other resistive forces, and as
such do not meet the zero net force requirement for the first law to apply.

Newton’s second law

To predict a body’s motion, one must know the body’s mass, the forces acting on the
body, and a law of motion relating the two. The canonical law of motion in classical
physics is precisely Newton’s second law. The general form of Newton’s second law
states that the mass m, velocity v, and net force F acting on a point-like body are
related according the equation

d(mv)

dt
= F . (2.109)

The quantity mv is called the body’s momentum (we will return to momentum in a
few lectures), and the second law says that the rate of change of a body’s momentum
with respect to time equals the net force acting on the body. Very often, since most
bodies have constant mass, the derivative in Newton’s second law reduces to

d(mv)

dt
= m

dv

dt
= ma = F , (2.110)

which is the F = ma form probably familiar from high school and the popular
science literature. We have three comments to make here:

• Newton’s second law is valid only in inertial frames of reference. If you
apply Newton’s second law to a body in a non-inertial frame, your theoretical
predictions will disagree with the body’s observed motion, i.e. your predictions
will be wrong! A formulation of dynamics in non-inertial frames is possible,
but requires the introduction of system forces; we will return to this shortly.

• Newton’s second law of motion applies to point masses. In practice this is not
really a problem, since it turns out that the second law is easily generalized to
systems of point masses, which are generally good approximations of real-life
bodies.

• A body’s acceleration and subsequent motion are the result of the force acting
on the body. This is why we have written Eqs. 2.110 and 2.109 with accelera-
tion/momentum (and not force) on the left-hand side—we wish to emphasize
that accelerated motion is the result of an applied force. This is the physically
instructive way to think about the second law, while the popular F = ma can
be misleading by giving the impression that force is the result of acceleration.

Of course, mathematically, it makes no difference whatsoever if you write
F = ma or ma = F . Our goal here is just to emphasize that force and
acceleration are not quite on equal footing—forces cause a body to accelerate,
and not vice versa.

Finally, we stress that we have not derived Newton’s second law, but simply quoted it.
And that is the best physics currently knows how to do. One cannot derive the second
law from fundamental principles because the second law is the fundamental principle.
We take its validity as a fact of nature, because that is how an overwhelming body of
experimental evidence shows that nature behaves. Keep in mind, as suggested in the
very first sentence of this book, that experiment is the highest authority in physics.
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On the necessity of Newton’s fist law

Newton’s second law raises an interesting question: If F = ma, which implies a = 0
and thus v = constant when F = 0, is Newton’s first law redundant? In other words,
if the first law is just a special case of the second, what is the point of the first? The
answer is that the first law is not just a special case of the second. If we temporarily
adopt a more mathematically-leaning, theoretical approach, Newton’s first law is a
sort of existence theorem for inertial frames. In this light, Newton’s first law can be
formulated as follows:

If the net force on a body is zero, there exists an inertial frame of reference
in which the body moves with constant velocity.

This then, is the purpose of the first law: Newton’s second law is only valid in inertial
frames, and Newton’s first law guarantees that these frames exist. In more intuitive
language, Newton’s first law sets the stage in which the second law is valid.

On the well-definedness of inertial frames

Instead of sweeping it under the rug, now is a good opportunity to explicitly state
the following:

The key assumption underpinning the well-definedness of inertial frames,
as we have defined them in this text, is the assumption that it is possible
to identify all forces acting on a body, and to state with certainty that
the net force on a body either is or is not zero.

Since we have defined forces as a body’s interaction with well-defined, physical
objects in its environment—things you can see or touch, or otherwise identify—the
assumption that you can reliably identify forces is more or less reasonable. If you
place a tested body far enough from everything else (and this is possible at least in
principle), then the force on the tested body will be zero, simply because there is
nothing else in the environment. Alternatively—and this is much easier in practice—
one could arrange an experiment so as to ensure the net force on a tested body is
zero (this is possible by the principle of superposition as long as one can identify the
individual forces on the body) and thus determine if a frame is inertial or not. But
the definition of inertial frames is still not as rigorous as one might like. For example,
an Einstein quotation often cited in this context reads:

“The weakness of the principle of inertia lies in this, that it involves an
argument in a circle: a mass moves without acceleration if it is sufficiently
far from other bodies; we know that it is sufficiently far from other bodies
only by the fact that it moves without acceleration.”

Although this quote is somewhat out of context here (it comes originally from a
lecture on general relativity, which dispenses with the Galilean concept of global
inertial frames entirely) it captures well the struggles many students—the author
included—have had at one point or another during their studies with pinpointing what
exactly is a fault of their own understanding and what is a gray area of Newtonian
theory. Our hope is that, from the student’s perspective, it is helpful rather than
disheartening to be clearly told that the assumption underlying our definition of
inertial frames is that it must be possible to identify with certainty if forces do or do
not act on an observed body.
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In any case, once we transition from axiomatic questions of theoretical existence
into practical application, the situation is much clearer. It turns out that in essentially
all practical cases, it is quite straightforward to identify if the net force on a body
is or is not zero, and to perform calculations in the scope of Newtonian mechanics
(accounting for system forces if necessary) that perfectly agree with observed behavior
within the realm of experimental error. The relevant question to ask is not “can
Newtonian mechanics be formulated in a perfectly axiomatic, self-consistent manner?”
but instead “while understanding its theoretical limitations, can we use Newtonian
mechanics to predict the behavior of real-life objects in a manner that agrees with
what is observed in nature?”. And the answer to the second question is a resounding
yes! Ultimately physics is an experimental science, and any attempts to fully
axiomatize it in the style of mathematics or logic, where everything is self-consistent
and well-defined, will probably fall short.

Newton’s third law

Newton’s third law is commonly quoted as something along the lines of “every action
has an equal and opposite reaction”. But that is not a particularly instructive way
to think about the third law. A better formulation of Newton’s third law might be:

(a) Forces arise from the mutual interaction between two bodies.

(b) In a dynamical interaction between, say, body A and body B, the force with
which body A acts on body B is equal in magnitude and opposite in direction
to the force with which body B acts on body A.

In particular, there is no concept of “first” and “second”, “source” and “recipient”,
or even “action” and “reaction” built into Newton’s third law. There are only two
bodies, and that is that. Which body we call A which we call B is an arbitrary label
of human construction, and interchanging the names does not change the underlying
physics. Like Newton’s first two laws, the third law is experimental—it is not derived
from fundamental principles but assumed to hold based on an overwhelming body of
experimental evidence that indicates that it does.

Two examples with Newton’s third law

We now offer two real-life examples of force pairs in the context of Newton’s third law:

(i) Consider a diver jumping into a swimming pool. As the diver falls towards the
pool, the diver’s weight (i.e. the gravitational force of the Earth on the diver)
and the gravitational force of the diver on the Earth are an equal and opposite
force pair. The diver attracts the Earth with exactly the same magnitude with
which the Earth attracts the diver.

The reason, of course, that the diver seems to fall towards the Earth instead
of the Earth rising up to meet the diver is the enormous difference in masses.
The mass of the Earth is roughly mE ∼ 6 · 1024 kg, while the mass of a diver
might be closer to md ∼ 60 kg. The corresponding ratio of accelerations is

FE = Fd =⇒ mEaE = mdad =⇒ aE
ad

=
md

mE
∼ 6 · 10−23. (2.111)

In the given time it takes the diver and Earth to come together, the Earth will
have traveled a distance that is a factor 6 · 10−23 smaller than the distance
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traveled by the diver. The distance traveled by the Earth is thus completely
imperceptible.27

(ii) Now consider a block resting on a table. This situation is more subtle, because
it implicitly involves three bodies: the block, the table, and the Earth. Here
are four examples of correct third-law force pairs:

1. The contact force of the table’s surface on the block and the reciprocal
contact force of the block’s bottom on the table’s surface. (This type of
contact force between two surfaces is called a normal force, and we will
formally define it shortly.)

2. The block’s weight and the corresponding gravitational force of the block
on the Earth.

3. The normal force of the Earth’s surface on table’s legs and the reciprocal
normal force of the table’s legs on the Earth’s surface.

4. The table’s weight and the corresponding gravitational force of the table
on the Earth.

And here is an example of an incorrect force pair from the perspective of
Newton’s third law:

The block’s weight and the normal force of the table on the block.
(Incorrect!)

This example can be tricky for students the first time they encounter it,
probably because as long as the table and block are at rest (as they usually
are in everyday life) the block’s weight and the normal force of the table on
the block are indeed equal in magnitude and opposite in direction. But that is
misleading. And if you think about forces in terms of interactions between two
bodies, it becomes clear that the block’s weight and the table-block normal
force are unrelated by Newton’s third law—the block’s weight arises from its
interaction with the Earth, and has nothing whatsoever to do with the table.
But there is a more exciting way to reach the same conclusion: pick up the
table, with the block still on it, and throw it out the window! You will find
that in free fall, the block’s weight is just the same as when the block was at
rest, while the normal force of the table on the block is now zero. Any third
law force pair must always be equal in magnitude and opposite in direction, so
the block’s weight and the table-block normal force are an incorrect force pair.

2.3.3 Some common forces from everyday life

We now list some of the more common mechanical forces from our daily lives, such as
weight, friction, the normal force, etc., briefly discuss their mechanism, and provide
relevant formulae for their practical computation.

27Of course there also countless other objects on the Earth’s surface with mass similar to the
diver that move the Earth every which way by similarly imperceptibly small amounts, so even if
we had a measurement instrument that could measure distances to one part in 6 · 10−23, we would
probably be unable to isolate the effect of the diver.
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Weight

Weight arises from the gravitational interaction between massive bodies, meaning that
only bodies with mass can experience weight. In practice, the word “weight” refers
to the gravitational force of a very massive body on another body with comparatively
very little mass. For example, it makes sense to speak of the weight of a person on
the Earth’s surface or the weight of a spacecraft on the Moon, since both the person
and spacecraft are many orders of magnitude less massive than the Earth or Moon.
In such cases, it makes sense to attribute to the massive body a gravitational field
g(r), which gives the gravitational acceleration g felt by the light body as a function
of its position r from the massive body’s center. We will discuss how to predict g(r)
in the lectures on gravitation; for now we take its existence for granted.

Having introduced the concept of a planet’s gravitational field g, we can now
give an expression for weight: the weight Fg of a body of mass m under the influence
of a gravitational acceleration g is

Fg = mg. (2.112)

In practice, m would represent something small, like the person, while the effects of
the massive body (the planet, say) are encoded in the gravitational acceleration g.
For now we will study only the weight of everyday objects on the Earth’s surface,
in which case g is constant28 and an object’s weight is easy to calculate, since it
depends only the object’s mass m. (This is why people can confuse weight and mass,
since in everyday situations a body’s weight is determined only by its mass.)

Example: An object in free fall

For a body in free fall in the absence of air resistance, the only force on the body is
its weight. The net force on the body is thus Fnet = Fg, and Newton’s second law
for the free-falling body reads

ma = Fnet = Fg
(a)
= mg =⇒ a = g. (2.113)

Recall that a = g was the starting point for our kinematic analysis of free fall in
Eqs. 2.59 and 2.80; we can now justify the use of a = g on dynamical grounds.

Normal force

First, a note on terminology: the direction perpendicularly outward from a surface is
called the normal to the surface in mathematical contexts. It is this use of the word
normal that gives the normal force its name (and not the everyday use of the word
normal to mean something regular, ordinary, or natural).

Normal force is the contact force exerted by a surface on a body in contact
with the surface. As the name suggests, normal force always points perpendicularly
outward from the surface exerting it, while its magnitude is such as to exactly cancel
the net force applied by the body in direction normal to the surface. The normal
force is a consequence of solids resisting deformation under applied stress, and our
simple formulation of the normal force assumes the surface exerting it is perfectly
rigid. While that language might sound complicated, the underlying concept is quite

28The magnitude of g on the Earth’s surface is roughly g = |g| = 9.8m s−2, and its direction is
radially inward towards the Earth’s center of mass (i.e. “down” in everyday language). We will
often use the convenient approximation g ≈ 10m s−2.
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intuitive—in everyday terms, the normal force is what prevents you from falling
through the floor or a book from falling through the desk it rests on.

Three examples involving the normal force

Here are three (hopefully) instructive examples, all involving a block resting on a
flat surface.

1. Consider a block resting on a flat horizontal surface. As long as the block and
the surface are at rest with respect to the Earth and no forces act on the block
besides its weight...

(a) The normal force of the block on the surface is equal in magnitude and in
direction to the block’s weight.

(b) The normal force of the surface on the block is equal in magnitude and
opposite in direction to the block’s weight.

The block-surface normal forces form a Newton’s third law force pair (but the
block’s weight and either of the two normal forces do not—recall the second
example with Newton’s third law above).

2. Now consider a block resting on a flat surface inclined at an angle θ relative to
the horizontal. In this case only a component of the block’s weight is normal
to the surface; this component, which we denote by Fg⊥ , is equal to

Fg⊥ = mg cos θ. (2.114)

The magnitude of the normal force of the surface on the block is thus

Fn = Fg⊥ = mg cos θ, (2.115)

while the direction, by definition, is normal to the surface. (The weight
component parallel to the surface is Fg∥ = mg sin θ, but only the component
perpendicular to the surface is relevant in the context of the normal force.)

3. Finally, suppose someone puts a block on a flat table, then drops the block and
table from the top of a tall building. As long as the block-table system is in
free fall with acceleration g, both the normal force of the block on the table
and the normal force of the table on the block are zero. Loosely, the table is
falling from under the block just as fast as the block is falling into the table, so
the two do not exert any contact forces on each other.

Of course, a large flat table will not fall with acceleration g but will experience
considerable air resistance. In this more realistic scenario, the normal force of
the table on the block would equal the upward force of air resistance on the
falling table.

Friction

Friction is a resistive force that arises from the relative motion between two surfaces
in contact.29 Friction always acts so as to oppose (or informally, “slow down”) the

29We will use the word friction in the context of one solid moving relative to another solid and the
term fluid resistance in the context of a solid moving through a fluid, such as air or water. However,
you might also hear fluid resistance referred to as “fluid friction”, especially in engineering circles.
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relative motion of two surfaces. For example, a book sliding across a table comes to
a halt because of the friction force of the table on the book.

Friction arises largely from two sources: (i) chemical adhesion between the two
surfaces and (ii) mechanical interlocking between the microscopic bulges, ridges,
holes, and other imperfections on the two surfaces. In truth, the simplified view of
friction taught in introductory mechanics courses is just a convenient macroscopic
abstraction for a complex microscopic phenomenon that is still a subject of active
research and not fully understood. We will study two types of friction, kinetic friction
and static friction, both only in the scope of the macroscopic abstraction.

Kinetic friction

Kinetic friction is the force of friction between two moving surfaces. For the purposes
of our course, the magnitude of kinetic friction fkin on a body sliding along a surface
is

fkin = kkinFn, (2.116)

where Fn is the normal force of the surface on the body and kkin is a dimensionless
constant, called the coefficient of kinetic friction, that depends on the material
properties of both the body and the surface. Note that the magnitude of kinetic
friction is proportional to the magnitude of the normal force, which is what we might
expect from everyday life—the harder you press two surfaces together, the more
difficult it is to slide them past each other.

In this course we will treat the coefficient of kinetic friction as independent of
velocity. Although this approximation holds good in most cases, kinetic friction does
have a weak dependence on the relative velocity of the two surfaces. For orientation,
typical values of kkin for contacts between everyday materials range from 0.1 to 1.0.

The direction of the kinetic friction force on a body is always opposite the body’s
instantaneous velocity relative to the surface causing the friction; in symbols this
could be written fkin ∥ −v. The vector form of kinetic friction on a body moving at
velocity v relative to a surface exerting normal force Fn is thus

fkin = −kkinFn
v

|v|
≡ −kkinFn v̂, (2.117)

where v̂ ≡ v/|v| is the unit vector in the direction of the body’s instantaneous
velocity (discussed more in the context of (2.24)) and kkin is the coefficient of kinetic
friction between the body and the surface.

Static friction

Static friction opposes the potential relative motion of two surfaces at rest. In the
macroscopic approximation, the magnitude of static friction fs on a body resting on
some surface is

fs ≤ ksFn, (2.118)

where Fn is the normal force of the surface on the body and kkin is called the
coefficient of kinetic friction and depends on the material properties of both the
body and the surface. Often, but not always, kkin ≲ ks and thus fkin ≲ fs for a given
normal force Fn. In everyday language fkin < fs means that it takes less force to
keep a moving body moving than it does to put a static body into motion.

The direction of fs is such as to oppose the hypothetical direction in which a
body would move in the absence of static friction. In this sense, the effect of fs is to
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cancel out the component of the net force on a body parallel to a surface.30 One
then interprets the inequality fs ≤ ksFn as follows: fs will be just large enough, but
no larger than is necessary (hence the inequality), to stop whatever forces act on
the body parallel to the surface from making the body slip. Of course, this can only
go on so long; at some point the disruptive forces will reach ksFn, beyond which
fs cannot increase, and the body slips. Just at the slipping point (2.118) becomes
fs = ksFn, and after the body slips, kinetic friction replaces static friction.

Example: Measuring static friction

One can measure the coefficient of static friction between two materials (we will use
steel and wood for concreteness) with the following experiment. Place the steel block
on a wooden ramp with an adjustable incline, and let θ denote the ramp’s incline
relative to the horizontal.

In small increments, increase the ramp’s incline, and measure the angle θmax at
which the block first slips off the ramp. Just as the block slips, the magnitude of
static friction fs and the block’s weight are related according to

fs = Fg∥ = mg sin θmax, (2.119)

where Fg∥ is the weight component parallel to the ramp’s surface. Meanwhile, the
static friction and normal force on the block are in general related by the inequality
fs ≤ ksFn = mg cos θ, where (assuming the block and ramp are at rest) the normal
force on the block is Fn = Fg⊥ = mg cos θ, i.e. the block’s weight component normal
to the ramp’s surface. Just as the block slips, this simplifies to the equality

fs = ksFn = ks · (mg cos θmax). (2.120)

We then equate the expressions for fs in Eqs. 2.119 and 2.120 to get

mg sin θmax = ksmg cos θmax =⇒ ks = tan θmax, (2.121)

where θmax is the ramp incline angle at which the block first slips. Note that a
coefficient of static friction larger than one is perfectly possible on physical grounds—
this corresponds to a value of θmax larger than 45◦.

Spring force

For purposes of this course, the spring force Fspring produced by a spring compressed
or extended by a displacement ∆x relative to the spring’s equilibrium position is

Fspring = −k∆x, (2.122)

where k, called the spring constant, is a property of the spring encoding the spring’s
stiffness. Equation 2.122 is called Hooke’s law in honor of the English scientist
Robert Hooke, who made the first recorded observations of the linear relationship
between stress and strain in elastic materials.

Because of the minus sign, the spring force is opposite in direction to the displace-
ment ∆x. In everyday language, this is why a spring will push your hands apart
when you compress it and pull your hands to together when you stretch it.

30Just like the normal force cancels the force component perpendicular to a surface
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Note that Hooke’s law does not hold for arbitrarily large displacements; if nothing
else, this is obvious from daily life, since a spring will eventually snap if stretched too
far. We will return to the limits of linear elasticity in the lectures on deformation.

Tension forces and pulleys

Ropes, strings, cables, and so on, often in combination with pulleys, can be used to
transfer, redirect, and otherwise manipulate a force applied to one of the rope’s ends.
In this context, the force exerted by the rope on the objects attached to it is called
a tension force. Ropes and pulleys commonly feature in introductory mechanics
courses because they are relatively straightforward to analyze and offer instructive
practice with Newton’s laws of motion.

We will not have much more to say about rope-pulley systems in these lectures
(you will see them more in the Exercises portion of this course) and mention them
here only for completeness. We will return to ropes, in a different context, in the
lectures on mechanical waves.

2.3.4 Dynamics of uniform circular motion

Recall from Section 2.2.5 that a body in circular motion is accelerating, since the
direction of the body’s velocity continuously changes as the body moves around
the circle. Acceleration is possible only under the influence of a force, and in this
context the force responsible for a body’s circular motion gets a special name: the
centripetal force. Centripetal force is just a label given to an existing force responsible
for causing circular motion; it makes sense to say, for example, that weight is the
centripetal force for a satellite orbiting the earth, or that tension is the centripetal
force for a ball tied to a string that you are whirling in a circle around your head.
The centripetal force is not a new type of force, just a special name to remind you of
which existing force is responsible for causing circular motion.

For review from the end of Section 2.2.4, in general a body’s acceleration can be
decomposed into components parallel and perpendicular to the body’s instantaneous
velocity v in the form

a = a⊥ + a∥ or a = ac + at, (2.123)

where ac = a⊥ and at = a∥ are just two equivalent notations for the acceleration
components perpendicular and parallel to v, respectively. The centripetal component
ac is responsible for causing uniform circular motion. For review from (2.55), the
component ac is

ac = −ω2r, (2.124)

where ω2 is the body’s angular velocity and r is the body’s position relative to the
center of rotation. Any force acting as the centripetal force for a body of mass m in
circular motion must then be equal to

Fc = mac = −mω2r. (2.125)

Like ac, the centripetal force points to the center of rotation. Using the various
equivalent expressions from (2.44), the centripetal force can also be written

Fc = −mω2r = −mvω êr = −m
v2

|r|
êr, (2.126)
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where in this context êr = r/|r| is the unit vector in the direction of r. In everyday
language, êr is just the direction from the center of the circle to the body’s current
position on the circle’s circumference, while the minus sign in (2.126) means that Fc

points radially inward toward the center of rotation, opposite the direction of êr.

Example: Car turning a bend on a flat road

Consider a car, which we will treat as a point mass of mass m, driving in a circle of
radius R on a flat road. In this case the force responsible for the car’s centripetal
acceleration is the static friction31 of the road surface on the car’s wheels. Using
(2.118), the magnitude of this static friction is

fs ≤ ksFn, (2.127)

where ks is the coefficient of static friction between the car wheels and the road
surface, and Fn is the normal force of the road on the car. Assuming the car is
at rest in the vertical direction, the normal force and the car’s weight are equal in
magnitude, i.e. Fn = mg, so

fs ≤ ksFn = ksmg. (2.128)

The static friction is the only force acting as the centripetal force in this context
(there are no other horizontal forces on the car, neglecting air resistance) and is thus
equal in magnitude to

|Fc|
(a)
=

mv2

|r|
(b)
=

mv2

R
= fs ≤ ksmg. (2.129)

where (a) uses the final expression in (2.126) and (b) assumes a constant radius of
rotation |r| = R. We then simplify the expression and rearrange to get the condition

mv2

R
≤ ksmg =⇒ v2 ≤ ksgR. (2.130)

Our analysis predicts that the car will round the curve without slipping as long as its
squared velocity v2 is less than ksgR. How does this prediction compare to everyday
observations? To make things exciting (and make the calculation turn out nicely),
let’s consider a 50m radius of curvature on a race track, where the coefficient of static
friction between race car tires and the specialized asphalt used for racing circuits can
reach ks = 0.8. Taking g ≈ 10m s−2, the car will round the curve without slipping
for velocities

v2 ≤ ksgR = 0.8 · 10m s−2 · 50m = 400m2 s−2.

The maximum permissible velocity is

vmax =
√
400m2 s−2 = 20m s−1 ≈ 70 kmh−1.

The result, vmax ≈ 70 kmh−1, is a reasonable speed for a race car around a large
bend. The main lesson here is that even a basic analysis (using a point mass model,

31As long as the car is not skidding, the friction between the wheels and road is static and not
kinetic. From a physical perspective, kinetic friction can do just as good a job causing circular
motion. But unless you are a race car driver, you probably don’t want to be in a car that is rounding
a curve under the influence of kinetic friction—that means the car is skidding and probably out of
control! We will discuss rolling without slipping in the lectures on rotational mechanics.
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2.3. Dynamics

neglecting air resistance and slipping, etc...) agrees to a first approximation with
behavior observed in everyday life.

There are a few ways to increase the maximum speed vmax beyond the result
calculated above. In automotive racing, there exist a whole host of engineering tricks,
such as airfoils, fans, specialized chassis geometry, and so on, that redirect airflow so
as to produce a downforce on the car. This downforce increases the normal force of
the road on the car beyond the car’s weight, thereby increasing the friction between
the car and road. This is called “ground effect” in the language of automotive
engineering. Meanwhile, in both racing circuits and in civil engineering (for example
in highway exits), it is common to use banked curves to increase safe turning speeds.
On a banked curve, the component of the normal force on the car that points radially
inward toward the center of rotation can act as a centripetal force. You will study
banked curves in the Exercises portion of this course.
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A.1. Velocity and acceleration in general circular motion

A Topics from mechanics

A.1 Velocity and acceleration in general circular motion

In this section we generalize the results of Section 2.2.5 and derive the linear velocity
v(t) and acceleration a(t) of a body in general circular motion of radius R with
time-varying angular velocity ω(t) = dφ/dt. Note that this material is completely
optional—it belongs in a second year course and you are not required to understand
it now. We include it only for more advanced students interested in a more formal
treatment of circular motion.

We use a two-dimensional polar coordinate system with the origin at the center
of rotation and work in terms of the polar unit vectors êφ and êr. In terms of the
standard unit vectors êx and êy, the polar unit vectors êr and êφ read

êr = cosφ êx + sinφ êy and êφ = − sinφ êx + cosφ êy, (A.1)

where φ is the body’s angular coordinate, measured with respect to the x axis. For
later use, the unit vectors and their derivatives are related according to

d êr
dφ

= − sinφ êx + cosφ êy = êφ (A.2)

d êφ
dφ

= − cosφ êx − sinφ êy = − êr. (A.3)

In terms of the polar unit vectors, the position vector r(t) of a body in circular
motion is

r(t) = r(t) êr(t)
(a)
= R êr(t), (A.4)

where using r(t) = R in (a) follows from radial distance from the origin being constant
in circular motion.

Velocity in general circular motion

Using (A.4) to express position r(t), the body’s velocity is

v(t) =
dr

dt
=

dR

dt
êr(t) +R

d êr
dt

(a)
= R

d êr
dt

, (A.5)

where (a) uses the fact that R = constant =⇒ dR/dt = 0. Using the chain rule, we
then make the auxiliary calculation

d êr
dt

=
d êr
dφ

dφ

dt

(a)
=

dφ

dt
êφ

(b)
= ω(t) êφ, (A.6)

where (a) uses êφ = d êr/ dt from (A.2) and (b) uses ω(t) = dφ/dt. Substituting
(A.6) into (A.5), the body’s velocity is thus

v(t) = R
d êr
dt

= Rω(t) êφ, (A.7)

in agreement with the geometrically-derived result in (2.40). Similarly, the magnitude
of the body’s velocity is

|v(t)| = v(t) = Rω(t), (A.8)
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A.1. Velocity and acceleration in general circular motion

in agreement with the result in (2.39).

Acceleration in general circular motion

Using (A.8) to express the velocity v(t), the body’s acceleration is

a(t) =
dv

dt
= R

dω

dt
êφ +Rω(t)

d êφ
dt

. (A.9)

Using the chain rule, we then make the auxiliary calculation

d êφ
dt

=
d êφ
dφ

dφ

dt

(a)
= −dφ

dt
êr

(b)
= −ω(t) êr, (A.10)

where (a) uses êr = −d êφ/ dt from (A.3) and (b) uses ω(t) = dφ/dt. Substituting
(A.10) into (A.9), the body’s acceleration is thus

a(t) = R
dω

dt
êφ −Rω2(t) êr. (A.11)

For uniform circular motion dω/dt = 0, in which case (A.11) simplifies to

a(t) = −Rω2 êr, (uniform circular motion) (A.12)

in agreement with the result derived in (2.55) for the special case of uniform circular
motion. Finally, in the language of decomposed acceleration a = ac + at, from
Equations (2.25) and (2.56), the tangential and centripetal acceleration components
for general circular motion are

at = R
dω

dt
êφ and ac = −Rω2 êr, (A.13)

which follows directly from (A.11) together with v ∥ êφ and êr ⊥ êφ.
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