
4.3. Parity

4.3 Parity

Discuss the quantum-mechanical parity operator and give a physical interpretation of parity
transformation. State and derive some of the parity operator’s important quantities. Discuss
the relationship of the parity operator to problems with even potentials.

• Parity transformation corresponds to space inversion, and is encoded by the parity
operator P, which maps r to −r in the form P : ψ(r) 7→ ψ(−r).

• The parity operator is Hermitian, which we prove with

⟨ϕ(r)|P|ψ(r)⟩ = ⟨ϕ(r)|ψ(−r)⟩ = ⟨ϕ(−r)|ψ(r)⟩ = ⟨Pϕ(r)|ψ(r)⟩ .

The parity operator is also unitary, i.e. PP = I =⇒ P = P−1.

• The parity operator changes the sign of the gradient (or derivative) operator, i.e.

P∇ψ = −∇Pψ =⇒ P∇ = −∇P.

The relationship P∇ = −∇P implies

P∇n = (−1)n∇nP and P d2

dx2
=

d2

dx2
P,

and the last two identities lead to

Pp = −pP and P(r × p) = PL = LP.

• For problems with an even potential, is always possible to create an even or odd
stationary state eigenfunction for each energy eigenvalue E.

Derivation: Parity Operator and an Even Potential

• For an even potential, i.e. V (r) = V (−r), the parity operator acts on V according to
PV (r) = V (−r)P = V (r)P, in which case P and H commute, which follows from

PHψ(r) = HPψ(r) =⇒ [P, H] = 0.

If P and H commute, and if |ψ(r)⟩ is a stationary state of the Hamiltonian and obeys
the stationary Schrödinger equation

H |ψ(r)⟩ = E |ψ(r)⟩ ,

then |ψ(−r)⟩ is also a stationary state with the same energy E, i.e.

H |ψ(−r)⟩ = E |ψ(−r)⟩

• We can then combine the stationary state solutions |ψ(r)⟩ and |ψ(−r)⟩ to create the
odd and even functions |ψ+(r)⟩ and |ψ−(r)⟩ according to

ψ±(r) =
1√
2
(ψ(r)± ψ(−r)) .

In other words, for an even potential, we can always create an even or odd stationary
state eigenfunction for each energy eigenvalue E (assuming E is nondegenerate).

Note also that both |ψ+(r)⟩ and |ψ−(r)⟩ are eigenfunctions of the parity operator
with eigenvalues ±1, i.e.

Pψ+(r) = ψ+(r) and Pψ−(r) = −1 · ψ−(r)
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