4.3 Parity

Discuss the quantum-mechanical parity operator and give a physical interpretation of parity transformation. State and derive some of the parity operator's important quantities. Discuss the relationship of the parity operator to problems with even potentials.

- Parity transformation corresponds to space inversion, and is encoded by the parity operator \mathcal{P} , which maps \mathbf{r} to $-\mathbf{r}$ in the form $\mathcal{P}: \psi(\mathbf{r}) \mapsto \psi(-\mathbf{r})$.
- The parity operator is Hermitian, which we prove with

$$\langle \phi(\mathbf{r})|\mathcal{P}|\psi(\mathbf{r})\rangle = \langle \phi(\mathbf{r})|\psi(-\mathbf{r})\rangle = \langle \phi(-\mathbf{r})|\psi(\mathbf{r})\rangle = \langle \mathcal{P}\phi(\mathbf{r})|\psi(\mathbf{r})\rangle.$$

The parity operator is also unitary, i.e. $\mathcal{PP} = I \implies \mathcal{P} = \mathcal{P}^{-1}$.

• The parity operator changes the sign of the gradient (or derivative) operator, i.e.

$$\mathcal{P}\nabla\psi = -\nabla\mathcal{P}\psi \implies \mathcal{P}\nabla = -\nabla\mathcal{P}.$$

The relationship $\mathcal{P}\nabla = -\nabla \mathcal{P}$ implies

$$\mathcal{P}\nabla^n = (-1)^n \nabla^n \mathcal{P}$$
 and $\mathcal{P}\frac{\mathrm{d}^2}{\mathrm{d}x^2} = \frac{\mathrm{d}^2}{\mathrm{d}x^2} \mathcal{P},$

and the last two identities lead to

$$\mathcal{P}p = -p\mathcal{P}$$
 and $\mathcal{P}(r \times p) = \mathcal{P}L = L\mathcal{P}$.

• For problems with an even potential, is always possible to create an even or odd stationary state eigenfunction for each energy eigenvalue E.

Derivation: Parity Operator and an Even Potential

• For an even potential, i.e. V(r) = V(-r), the parity operator acts on V according to $\mathcal{P}V(r) = V(-r)\mathcal{P} = V(r)\mathcal{P}$, in which case \mathcal{P} and H commute, which follows from

$$\mathcal{P}H\psi(\mathbf{r}) = H\mathcal{P}\psi(\mathbf{r}) \implies [\mathcal{P}, H] = 0.$$

If \mathcal{P} and H commute, and if $|\psi(\mathbf{r})\rangle$ is a stationary state of the Hamiltonian and obeys the stationary Schrödinger equation

$$H|\psi(\mathbf{r})\rangle = E|\psi(\mathbf{r})\rangle$$
,

then $|\psi(-r)\rangle$ is also a stationary state with the same energy E, i.e.

$$H |\psi(-\mathbf{r})\rangle = E |\psi(-\mathbf{r})\rangle$$

• We can then combine the stationary state solutions $|\psi(\mathbf{r})\rangle$ and $|\psi(-\mathbf{r})\rangle$ to create the odd and even functions $|\psi_{+}(\mathbf{r})\rangle$ and $|\psi_{-}(\mathbf{r})\rangle$ according to

$$\psi_{\pm}(\boldsymbol{r}) = \frac{1}{\sqrt{2}} \left(\psi(\boldsymbol{r}) \pm \psi(-\boldsymbol{r}) \right).$$

In other words, for an even potential, we can always create an even or odd stationary state eigenfunction for each energy eigenvalue E (assuming E is nondegenerate).

Note also that both $|\psi_{+}(\mathbf{r})\rangle$ and $|\psi_{-}(\mathbf{r})\rangle$ are eigenfunctions of the parity operator with eigenvalues ± 1 , i.e.

$$\mathcal{P}\psi_{+}(\mathbf{r}) = \psi_{+}(\mathbf{r})$$
 and $\mathcal{P}\psi_{-}(\mathbf{r}) = -1 \cdot \psi_{-}(\mathbf{r})$