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Parity

Discuss the quantum-mechanical parity operator and give a physical interpretation of parity
transformation. State and derive some of the parity operator’s important quantities. Discuss
the relationship of the parity operator to problems with even potentials.

Parity transformation corresponds to space inversion, and is encoded by the parity
operator P, which maps r to —r in the form P : ¥ (r) — (—7r).

The parity operator is Hermitian, which we prove with
(@(r)[Ple(r)) = (o(r)[(=r)) = (o(=7)[¢(r)) = (Po(r)[(r)) .
The parity operator is also unitary, i.e. PP =1 = P =P~ L
The parity operator changes the sign of the gradient (or derivative) operator, i.e.
PV =-VPyp = PV =-VP.
The relationship PV = —VP implies
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P,
and the last two identities lead to

Pp =—-pP and P(r x p) =PL = LP.

For problems with an even potential, is always possible to create an even or odd
stationary state eigenfunction for each energy eigenvalue F.

Derivation: Parity Operator and an Even Potential

e For an even potential, i.e. V(r) = V(—7), the parity operator acts on V according to

PV(r) =V(—r)P = V(r)P, in which case P and H commute, which follows from
PHY(r)=HPy(r) = [P,H|=0.

If P and H commute, and if [¢/(r)) is a stationary state of the Hamiltonian and obeys
the stationary Schrodinger equation

Hp(r)) = Ed(r)),

then |¢(—7)) is also a stationary state with the same energy F, i.e.

H|¢p(=r)) = E|d(=r))

e We can then combine the stationary state solutions |¢(r)) and [¢)(—7)) to create the

odd and even functions |14 (7)) and |¢_(r)) according to
1
+(r)=— r)EY(—r)).
Yx(r) 7 ((r) £¢(=7))
In other words, for an even potential, we can always create an even or odd stationary
state eigenfunction for each energy eigenvalue E (assuming E is nondegenerate).

Note also that both |¢)4(r)) and [¢)_(r)) are eigenfunctions of the parity operator
with eigenvalues +1, i.e.

Pos(r)=ou(r)  and  Py_(r)=—1-v_(r)
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