
Elastomechanics
A Few Vector Calculus Identities
ϕ : R3 → R denotes a well-behaved scalar field.
v : R3 → R3 denotes a well-behaved vector field.
v ≡ |v| (shorthand for vector magnitude)
∇× (∇ϕ) = 0 (curl of gradient is zero)
1
2∇v

2 = v × (∇× v) + (v · ∇)v
∇× (∇× v) = ∇(∇ · v)−∇2v

Common Vector Operators By Components
(∇ϕ)i = ∂ϕ

∂xi
(gradient of a scalar)

(∇v)ij =
∂vi
∂xj

(gradient of a vector)
∇ · v = ∂vi

∂xi
(divergence of a vector)

∇2ϕ = ∂2ϕ
∂x2

i
(Laplacian of a scalar)

(∇2v)i =
∂
∂xj

∂vi
∂xj

(Laplacian of a vector)[
∇(∇ · v)

]
i
= ∂

∂xi

∂uj

∂xj
(gradient of divergence)[

(v · ∇)v
]
i
= vj

∂vi
∂xj

(convective derivative)

Geometry of Deformations
Displacement Vector
Consider a reference element in a continuous body at the po-
sition vector x. Due to a deformation, the reference element
shifts to the new position x′.
u ≡ x′ − x (displacement vector)
Lesson: x′, and thus u, are functions of the initial position x.

Separation Between Neighboring Elements
Consider two neighboring reference elements initially connected
by the position vector x. After a deformation, the elements are
connected by a new position vector x′.
(dl)2 = (dxi)

2 (pre-deformation separation btwn. elements)
= (dx1)

2 + (dx2)
2 + (dx3)

2 (written in full)
du = dx′ − dx (displacement vector)
dx′ = dx+ du (new position in terms of u)
(dl′)2 = (dx′i)

2 (post-deformation separation btwn. elements)
= (dxi + dui)

2

Deriving the Strain Tensor
dui =

∂ui

∂xj
dxj (du in terms of dx)

Substitute this expression for dui into (dl′)2 above to get...

(dl′)2 =
(
dxi +

∂ui

∂xj
dxj

)2

= (dxi)
2 + 2 ∂ui

∂xj
dxj dxi +

∂ui

∂xj

∂ui

∂xk
dxj dxk

(dl′)2 − (dl)2 = 2 ∂ui

∂xj
dxj dxi +

∂ui

∂xj

∂ui

∂xk
dxj dxk (rearranged)

2 ∂ui

∂xj
dxj dxi =

(
∂ui

∂xj
+

∂uj

∂xi

)
dxi dxj (symmetrization)

∂ui

∂xj

∂ui

∂xk
dxj dxk = ∂uk

∂xi

∂uk

∂xj
dxi dxj (changed dummy indices)

=⇒ (dl′)2 − (dl)2 =
(
∂ui

∂xj
+

∂uj

∂xi
+ ∂uk

∂xi

∂uk

∂xj

)
dxi dxj

The above expression motivates the definition of the strain
tensor as...
uij ≡ 1

2

(
∂ui

∂xj
+

∂uj

∂xi
+ ∂uk

∂xi

∂uk

∂xj

)
(strain tensor)

(dl′)2 − (dl)2 = 2uij dxi dxj (in terms of strain tensor)
ulin
ij = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(linear strain tensor)

Strain Tensor and Displacement Vector’s Gradient
ulin
ij = 1

2

[
(∇u)ij + (∇u)ji

]
(linear ST in terms of ∇u)

ulin = 1
2

[
∇u+ (∇u)⊤

]
(in vector notation)

(∇u)ij =
∂ui

∂xj
= 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
︸ ︷︷ ︸

symmetric

+ 1
2

(
∂ui
∂xj

− ∂uj
∂xi

)
︸ ︷︷ ︸

asymmetric
∇u’s symmetric component is the linear strain tensor.
∇u’s asymmetric component corresponds to rigid rotations.

Strain Tensor’s Symmetry and Rigid Rotations

Strain tensor is made symmetric on physical grounds so that
uij = 0 (no internal deformation) for rigid rotations.
Consider a rigid rotation about the z axis by δϕ≪ 1.

R =

cos δϕ − sin δϕ 0
sin δϕ cos δϕ 0
0 0 1

 (rotation matrix)

R ≈

 1 −δϕ 0
δϕ 1 0
0 0 1

 (for δϕ≪ 1)

An initial position x = (x1, x2, x3)
⊤ transforms as...

x′ = Rx =

x1x2
x2

+

−x2δϕ
x1δϕ
0

 ≡ x+ u

Idea: by definition, rigid rotations don’t deform bodies (uij ≡ 0)!
Because the strain tensor is symmetrized...
u12 = ∂u1

∂x2
+ ∂u2

∂x1
= −δϕ+ δϕ = 0 (correctly, uij = 0)

u21 = ∂u2

∂x1
+ ∂u1

∂x2
= δϕ− δϕ = u12 = 0 (correctly, uij = 0)

If the strain tensor were not symmetrized...
ũ12 = ∂u1

∂x2
= −δϕ (non-physically, ũ12 ̸= 0)

ũ21 = ∂u2

∂x1
= δϕ (non-physically, ũ12 ̸= 0)

Physical Meaning of the Diagonal Components
No summation implied over α!
Diagonal components uαα encode extensional strains along the α
coordinate axes, e.g. uxx is extensional strain along the x axis.
Consider two neighboring body elements with reference separa-
tion ∆l. A deformation then separates the elements to...
(∆l′)2 = (∆l)2 + 2uik∆xi∆xk
Let ê1, ê2, and ê3 denote the strain tensor’s principal axes.
∆l′ =

√
1 + 2uαα∆l (elements with ref. spacing ∆x = ∆l ê1)

∆l′ ≈ (1 + uαα)∆l (for small strains uαα)
uαα = ∆l′−∆l

∆l (diag. components are extensional strains)

Physical Meaning of the Off-Diagonal Components
Consider two pairs of nearby body elements with separations...
∆x1 = ∆x1 ê1 and ∆x2 = ∆x2 ê2
A deformation then transforms the separations to...
∆x′

1 = ∆x1+
∂u
∂x1

∆x1 =
[(

1 + ∂u1

∂x1

)
ê1 +

∂u2

∂x1
ê2 +

∂u3

∂x1
ê3

]
∆x1

∆x′
2 = ∆x2+

∂u
∂x2

∆x2 =
[
∂u1

∂x2
ê1 +

(
1 + ∂u2

∂x2

)
ê2 +

∂u3

∂x2
ê3

]
∆x2

To lowest order in products of ∆x1, ∆x2 and ∂ui

∂xj
...

∆x′
1 ·∆x′

2 ≈
(
∂u1

∂x2
+ ∂u2

∂x1

)
∆x1∆x2 = 2u12∆x1∆x2.

cos θ12 =
∆x′

1·∆x′
2

|∆x′
1||∆x′

2|
≈ 2u12 (angle between ∆x′

1 and ∆x′
2)

θ12 ≈ π
2 − 2u12 (using arccosx = π

2 − x+O(x3))
∆θ12 ≡ π

2 − θ12 = 2u12
uαβ = 1

2∆θαβ (meaning of off-diagonal components)
∆θαβ is the post-deformation reduction in angle (from the ini-
tially perpendicular value π/2) between a pair of line elements
∆xα and ∆xβ initially parallel to êα and êβ , respectively.

Relative Change in Volume
Consider a cuboid reference body element with volume ∆V .
A deformation transforms the element to have volume ∆V ′.
x′i = xi + ui(xj) (post-deformation coordinates)
Jij ≡ ∂x′

i

∂xj
= ∂xi

∂xj
+ ∂ui

∂xj
= δij +

∂ui

∂xj
(Jacobian matrix)

J =

1 + ∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1
1 + ∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2
1 + ∂u3

∂x3


∆V ′ ≈ detJ ·∆V (to lowest order in ∆xj)
detJ ≈ 1 + ∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
= 1 + tr u (to first order in ∂ui

∂xj
)

tr u = ∆V ′−∆V
∆V (tr u gives relative change in volume)

2


