Elastomechanics

A Few Vector Calculus Identities
¢ : R® = R denotes a well-behaved scalar field.
v : R3 — R3 denotes a well-behaved vector field.

v = || (shorthand for vector magnitude)
VX (Vg)=0 (curl of gradient is zero)
V2 =v x (VX v)+ (v-V)v

VX (Vxwv)=V(V-v)- Vv

Common Vector Operators By Components

(Vo) = §T¢ (gradient of a scalar)
(Vv);; = g—;;j (gradient of a vector)
V.-v= gg (divergence of a vector)
V2 = % (Laplacian of a scalar)
(V2v); = 82} gz; (Laplacian of a vector)
[V(V- 'v)] = 827 ZZ: (gradient of divergence)

[(v- V)v] = v g;’ (convective derivative)
Geometry of Deformations

Displacement Vector

Consider a reference element in a continuous body at the po-
sition vector &. Due to a deformation, the reference element
shifts to the new position x’.

u=z —=x (displacement vector)
Lesson: &', and thus u, are functions of the initial position x.

Separation Between Neighboring Elements

Consider two neighboring reference elements initially connected

by the position vector . After a deformation, the elements are

connected by a new position vector x’.

(dl)? = (dz;)?  (pre-deformation separation btwn. elements)
= (dz1)? + (dxg)? + (dz3)? (written in full)

du =da’ — do (displacement vector)

da’ = dx + du (new position in terms of u)

(dl")? = (da)? (post-deformation separation btwn. elements)

Deriving the Strain Tensor

dui = gg; d.’L’j

Substitute this expression for du; into (dl’)? above to get...

(dw in terms of dx)
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du;
(dI")? = (dxi + Fo d:cj)
Ou; du,; Ou;
= (dz;)? + 2@ dz;dz; + O, Dun dz; dxy,
(dI")? = (dI)* = qui. dz; dz; + gg? g;i dzjdzy,  (rearranged)
22;? dzjdz; = (2“; du]) dz; dz; (symmetrization)

ggl gf:k dz; day = %% dz;dz; (changed dummy indices)
— (dI')2 — (dI)? = (“’“z + 5 G gt ) da day

The above expression motivates the definition of the strain
tensor as..

uij = % 8uL + BuJ + ?;;IZ gzl;) (strain tensor)
(dl")% — (dl) = 2u;; dw; dx; (in terms of strain tensor)

Ou;
8wi

ui‘;‘ = % (gg; + (linear strain tensor)
Strain Tensor and Displacement Vector’s Gradient
i [(Vu)ij + (Vu)ji] (linear ST in terms of Vu)

Usj
uiin = 3 [Vu+ (Vu) "]
Ou;  Ou, Ou;  Ou,
_Ou _ 1 i J 1 i JUy
T Oz 2 (8x3 + 8.131) +2 <8x] 81‘1)

(V)i
symmetric asymmetric
Vu’s symmetric component is the linear strain tensor.

Vu'’s asymmetric component corresponds to rigid rotations.
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(in vector notation)

Strain Tensor’s Symmetry and Rigid Rotations

Strain tensor is made symmetric on physical grounds so that
u;; = 0 (no internal deformation) for rigid rotations.
Consider a rigid rotation about the z axis by d¢ < 1.

cosdp —sindp 0
R = |sindp cosép 0 (rotation matrix)
0 0 1
1 —6¢ O
R~ |dp 1 0 (for 69 < 1)
0 0 1
An initial position & = (1,9, 23)" transforms as...
X 75025(1)
=Rx=|2|+| 2100 | =z+u
X2 0

Idea: by definition, rigid rotations don’t deform bodies (u;; = 0)!
Because the strain tensor is symmetrized...

U2 = g:; + g% =—0p+09=0 (correctly, u;; = 0)
U21 = ggf + g;; =0p—0p=u2=0 (correctly, u;; = 0)

If the strain tensor were not symmetrized...

U1p = % = —0¢ (non-physically, w12 # 0)
Uy = g—Z’f =49 (non-physically, @2 # 0)

Physical Meaning of the Diagonal Components

No summation implied over o!

Diagonal components u., encode extensional strains along the «
coordinate axes, e.g. U, is extensional strain along the = axis.
Consider two neighboring body elements with reference separa-
tion Al. A deformation then separates the elements to...
(Al")? = (Al)? + 2ui Ax; Axy

Let €1, €, and é3 denote the strain tensor’s principal axes.
Al' = /14 2uao Al (elements with ref. spacing Ax = Al é;)
Al 7 (1 4 uga)Al (for small strains uae )

’ . . .
Uga = 2 NN (diag. components are extensional strains)

Physical Meaning of the Off-Diagonal Components
Consider two pairs of nearby body elements with separations...
A:l:l = Axl él and ACL’Q = A.’L‘g é2

A deformation then transforms the separations to..

AZ) = Awi+ 2 Aay = (1454 ) 61+ 52 & +3“3 & Az,
A$2 = A$2+ Al‘g |:8 L é1 + (1 + 6u2) es + 077;2 é3:| AIQ
To lowest order in products of Axq, Axs and 8“’

Az} - Azl ~ (% + %) Az1Azy = 2u12A3:1Ax2.

3I2 Bml
A ! A ’7
cos g = m ~ 2u19 (angle between Az} and Axl)
012~ 5 — 2u12 (using arccosz = 5 — x + O(z?))
Abi12 = 5 — 012 = 2uqa
Uap = 2A9a5 (meaning of off-diagonal components)

Af,p is the post-deformation reduction in angle (from the ini-
tially perpendicular value 7/2) between a pair of line elements
Az, and Azg initially parallel to &, and ég, respectively.

Relative Change in Volume

Consider a cuboid reference body element with volume AV'.
A deformation transforms the element to have volume AV’.
x = x; + ui(xj) (post-deformation coordinates)

Jij = gij = gij + 8“1 =0;; + a“’ (Jacobian matrix)
duy 3u1 %
1 + 811 8x2 613
- Quy Quy Suy
J - 3$1 1 + 31}2 3:1)3
Quz Qug ug
oz Oxo 1+ Ox3
~ detJ - o lowest order in Az
AV’ ~ detJ - AV to lowest order in Az,
detJ ~ 1+ ggi + g% + g;g =1+tru (to first order in 8“’)
’
tru= % (tru gives relative change in volume)
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